Black Body Radiation Equation Expressed without Reference to Temperature

Introduction

Suppose we can measure black body radiation frequency but we know nothing about temperature or Boltzmann's constant.  We would like to express the black body radiation equation in terms of the average frequency that we observe.  The following shows how we can do that.

Calculating P(f) in Terms of <f>

The black body radiation equation is

P(f)= h f 3 c 2 1 ( exp( hf kT )1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfacaGGOa GaamOzaiaacMcacqGH9aqpdaWcaaqaaiaadIgacaWGMbWaaWbaaSqa beaacaaIZaaaaaGcbaGaam4yamaaCaaaleqabaGaaGOmaaaaaaGcda WcaaqaaiaaigdaaeaadaqadaqaaiGacwgacaGG4bGaaiiCamaabmaa baWaaSaaaeaacaWGObGaamOzaaqaaiaadUgacaWGubaaaaGaayjkai aawMcaaiabgkHiTiaaigdaaiaawIcacaGLPaaaaaaaaa@4AD2@  

(0.1)

Our goal here is to express this in term of the average frequency as shown below:

P(f)= h f 3 c 2 1 ( exp( f a )1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfacaGGOa GaamOzaiaacMcacqGH9aqpdaWcaaqaaiaadIgacaWGMbWaaWbaaSqa beaacaaIZaaaaaGcbaGaam4yamaaCaaaleqabaGaaGOmaaaaaaGcda WcaaqaaiaaigdaaeaadaqadaqaaiGacwgacaGG4bGaaiiCamaabmaa baWaaSaaaeaacaWGMbaabaGaamyyaaaaaiaawIcacaGLPaaacqGHsi slcaaIXaaacaGLOaGaayzkaaaaaaaa@4902@

(0.2)

a is a frequency that we will evaluate in terms of the average frequency <f>.   

To evaluate <f> we need to obtain the integral ratio:

<f>= 0 fP(f)df 0 P(f)df MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgYda8iaadA gacqGH+aGpcqGH9aqpdaWcaaqaamaapehabaGaamOzaiaadcfacaGG OaGaamOzaiaacMcacaWGKbGaamOzaaWcbaGaaGimaaqaaiabg6HiLc qdcqGHRiI8aaGcbaWaa8qCaeaacaWGqbGaaiikaiaadAgacaGGPaGa amizaiaadAgaaSqaaiaaicdaaeaacqGHEisPa0Gaey4kIipaaaaaaa@4DEF@  

(0.3)

The actual Bose integral of the function in equation (0.2) is pretty complicated so we will first obtain the value of a for a simpler function that Planck used when he discovered how to fit black body radiation to a curve that involved his famous constant h.

 

P'(f)= h f 3 c 2 exp[ hf kT ] h f 3 c 2 exp[ f a ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfacaGGNa GaaiikaiaadAgacaGGPaGaeyypa0ZaaSaaaeaacaWGObGaamOzamaa CaaaleqabaGaaG4maaaaaOqaaiaadogadaahaaWcbeqaaiaaikdaaa aaaOGaciyzaiaacIhacaGGWbWaamWaaeaacqGHsisldaWcaaqaaiaa dIgacaWGMbaabaGaam4AaiaadsfaaaaacaGLBbGaayzxaaGaeyOKH4 6aaSaaaeaacaWGObGaamOzamaaCaaaleqabaGaaG4maaaaaOqaaiaa dogadaahaaWcbeqaaiaaikdaaaaaaOGaciyzaiaacIhacaGGWbWaam WaaeaacqGHsisldaWcaaqaaiaadAgaaeaacaWGHbaaaaGaay5waiaa w2faaaaa@5716@  

(0.4)

For the expression in equation (0.4) we obtain after evaluating both integrals from equation (0.3) the value

a= <f> 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggacqGH9a qpdaWcaaqaaiabgYda8iaadAgacqGH+aGpaeaacaaI0aaaaaaa@3B9C@  

(0.5)

 And therefore we get

P'(f)= h f 3 c 2 exp[ 4 f <f> ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfacaGGNa GaaiikaiaadAgacaGGPaGaeyypa0ZaaSaaaeaacaWGObGaamOzamaa CaaaleqabaGaaG4maaaaaOqaaiaadogadaahaaWcbeqaaiaaikdaaa aaaOGaciyzaiaacIhacaGGWbWaamWaaeaacqGHsislcaaI0aWaaSaa aeaacaWGMbaabaGaeyipaWJaamOzaiabg6da+aaaaiaawUfacaGLDb aaaaa@49D6@  

(0.6)

This is a very interesting result.  We have frequency (proportional to energy) to the third power multiplying an exponential whose argument is 4 times the ratio of energy to average energy.  This energy distribution function is the same as we would have for massive entities with 8 degrees of freedom.  Now we know that photons have 3 translational degrees of freedom as well as 2 polarization modes for each of those degrees of freedom thereby totaling 6 degrees of freedom.  We now arrive at the dilemma "Where do the other 2 degrees of freedom come from?"

 

For P(f) the math is considerably more complicated but the result for a is almost the same.  Reference 1 shows how to evaulate the integrals for P(f).  The result for the fraction in equation (0.3) is

<f>= 0 fP(f)df 0 P(f)df = Γ(5)ζ(5) Γ(4)ζ(4) a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgYda8iaadA gacqGH+aGpcqGH9aqpdaWcaaqaamaapehabaGaamOzaiaadcfacaGG OaGaamOzaiaacMcacaWGKbGaamOzaaWcbaGaaGimaaqaaiabg6HiLc qdcqGHRiI8aaGcbaWaa8qCaeaacaWGqbGaaiikaiaadAgacaGGPaGa amizaiaadAgaaSqaaiaaicdaaeaacqGHEisPa0Gaey4kIipaaaGccq GH9aqpdaWcaaqaaiabfo5ahjaacIcacaaI1aGaaiykaiabeA7a6jaa cIcacaaI1aGaaiykaaqaaiabfo5ahjaacIcacaaI0aGaaiykaiabeA 7a6jaacIcacaaI0aGaaiykaaaacaWGHbaaaa@5E9D@  

(0.7)

where Γ(n)=(n1)! MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfo5ahjaacI cacaGGUbGaaiykaiabg2da9iaacIcacaGGUbGaeyOeI0IaaGymaiaa cMcacaGGHaaaaa@3F3D@  and ζ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeA7a6jaayk W7aaa@3934@  is the Riemann zeta function which has fairly simple values and these are readily available from Wikipedia. 

ζ(5)=1.03692 ζ(4)= π 4 90 =1.082323 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeqOTdO NaaiikaiaaiwdacaGGPaGaeyypa0JaaGymaiaac6cacaaIWaGaaG4m aiaaiAdacaaI5aGaaGOmaaqaaiabeA7a6jaacIcacaaI0aGaaiykai abg2da9maalaaabaGaeqiWda3aaWbaaSqabeaacaaI0aaaaaGcbaGa aGyoaiaaicdaaaGaeyypa0JaaGymaiaac6cacaaIWaGaaGioaiaaik dacaaIZaGaaGOmaiaaiodaaaaa@4FEB@  

and therefore our expression for <f> evaluates to:

<f>=4 1.03692 1.082323 a=3.8322a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgYda8iaadA gacqGH+aGpcqGH9aqpcaaI0aWaaSaaaeaacaaIXaGaaiOlaiaaicda caaIZaGaaGOnaiaaiMdacaaIYaaabaGaaGymaiaac6cacaaIWaGaaG ioaiaaikdacaaIZaGaaGOmaiaaiodaaaGaamyyaiabg2da9iaaioda caGGUaGaaGioaiaaiodacaaIYaGaaGOmaiaadggaaaa@4CEC@  

(0.8)

Therefore we can re-write our Bose-Einstein expression in terms of average frequency as:

P(f)= h f 3 c 2 1 ( exp( 3.8322f <f> )1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfacaGGOa GaamOzaiaacMcacqGH9aqpdaWcaaqaaiaadIgacaWGMbWaaWbaaSqa beaacaaIZaaaaaGcbaGaam4yamaaCaaaleqabaGaaGOmaaaaaaGcda WcaaqaaiaaigdaaeaadaqadaqaaiGacwgacaGG4bGaaiiCamaabmaa baWaaSaaaeaacaaIZaGaaiOlaiaaiIdacaaIZaGaaGOmaiaaikdaca WGMbaabaGaeyipaWJaamOzaiabg6da+aaaaiaawIcacaGLPaaacqGH sislcaaIXaaacaGLOaGaayzkaaaaaaaa@4F79@  

(0.9)

Calculating fmax in Terms of <f>

Since we now have the expression for P(f) in terms of <f> we should also frequency, fmax, of the maximum power in the same terms.  This will be a numerical result which is much simpler if we start with the Planck's original expression of P'(f).

Taking the derivative of equation (0.4) with respect to f we obtain:

 

d df { h f 3 c 2 exp[ 4f <f> ] }=3 h f 2 c 2 exp[ 4f <f> ]4 h f 3 c 2 <f> exp[ 4f <f> ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaaqaaiaadsgacaWGMbaaamaacmaabaWaaSaaaeaacaWGObGaamOz amaaCaaaleqabaGaaG4maaaaaOqaaiaadogadaahaaWcbeqaaiaaik daaaaaaOGaciyzaiaacIhacaGGWbWaamWaaeaacqGHsisldaWcaaqa aiaaisdacaWGMbaabaGaeyipaWJaamOzaiabg6da+aaaaiaawUfaca GLDbaaaiaawUhacaGL9baacqGH9aqpcaaIZaWaaSaaaeaacaWGObGa amOzamaaCaaaleqabaGaaGOmaaaaaOqaaiaadogadaahaaWcbeqaai aaikdaaaaaaOGaciyzaiaacIhacaGGWbWaamWaaeaacqGHsisldaWc aaqaaiaaisdacaWGMbaabaGaeyipaWJaamOzaiabg6da+aaaaiaawU facaGLDbaacqGHsislcaaI0aWaaSaaaeaacaWGObGaamOzamaaCaaa leqabaGaaG4maaaaaOqaaiaadogadaahaaWcbeqaaiaaikdaaaGccq GH8aapcaWGMbGaeyOpa4daaiGacwgacaGG4bGaaiiCamaadmaabaGa eyOeI0YaaSaaaeaacaaI0aGaamOzaaqaaiabgYda8iaadAgacqGH+a GpaaaacaGLBbGaayzxaaGaeyypa0JaaGimaaaa@7070@  

(0.10)

Solving equation (0.10) for fmax we get:

f max = 3 4 <f> MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaWgaa WcbaGaciyBaiaacggacaGG4baabeaakiabg2da9maalaaabaGaaG4m aaqaaiaaisdaaaGaeyipaWJaamOzaiabg6da+aaa@3F68@  

(0.11)

We should expect a similar result with the Bose expression.  Taking the same derivative of that expression we obtain

d df { h f 3 c 2 1 ( exp( 3.8322f <f> )1 ) }=3 h f 2 c 2 1 ( exp( 3.8322f <f> )1 ) 3.8322 h f 3 <f> c 2 exp( 3.8322f <f> ) ( exp( 3.8322f <f> )1 ) 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaaqaaiaadsgacaWGMbaaamaacmaabaWaaSaaaeaacaWGObGaamOz amaaCaaaleqabaGaaG4maaaaaOqaaiaadogadaahaaWcbeqaaiaaik daaaaaaOWaaSaaaeaacaaIXaaabaWaaeWaaeaaciGGLbGaaiiEaiaa cchadaqadaqaamaalaaabaGaaG4maiaac6cacaaI4aGaaG4maiaaik dacaaIYaGaamOzaaqaaiabgYda8iaadAgacqGH+aGpaaaacaGLOaGa ayzkaaGaeyOeI0IaaGymaaGaayjkaiaawMcaaaaaaiaawUhacaGL9b aacqGH9aqpcaaIZaWaaSaaaeaacaWGObGaamOzamaaCaaaleqabaGa aGOmaaaaaOqaaiaadogadaahaaWcbeqaaiaaikdaaaaaaOWaaSaaae aacaaIXaaabaWaaeWaaeaaciGGLbGaaiiEaiaacchadaqadaqaamaa laaabaGaaG4maiaac6cacaaI4aGaaG4maiaaikdacaaIYaGaamOzaa qaaiabgYda8iaadAgacqGH+aGpaaaacaGLOaGaayzkaaGaeyOeI0Ia aGymaaGaayjkaiaawMcaaaaacqGHsislcaaIZaGaaiOlaiaaiIdaca aIZaGaaGOmaiaaikdadaWcaaqaaiaadIgacaWGMbWaaWbaaSqabeaa caaIZaaaaaGcbaGaeyipaWJaamOzaiabg6da+iaadogadaahaaWcbe qaaiaaikdaaaaaaOWaaSaaaeaaciGGLbGaaiiEaiaacchadaqadaqa amaalaaabaGaaG4maiaac6cacaaI4aGaaG4maiaaikdacaaIYaGaam OzaaqaaiabgYda8iaadAgacqGH+aGpaaaacaGLOaGaayzkaaaabaWa aeWaaeaaciGGLbGaaiiEaiaacchadaqadaqaamaalaaabaGaaG4mai aac6cacaaI4aGaaG4maiaaikdacaaIYaGaamOzaaqaaiabgYda8iaa dAgacqGH+aGpaaaacaGLOaGaayzkaaGaeyOeI0IaaGymaaGaayjkai aawMcaamaaCaaaleqabaGaaGOmaaaaaaGccqGH9aqpcaaIWaaaaa@93F6@                                                                     (0.12)

Rewriting this equation by removing the common denominator and canceling other constants we obtain:

f max = 3 3.8322 <f> exp( 3.8322f <f> )1 exp( 3.8322f <f> ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaWgaa WcbaGaciyBaiaacggacaGG4baabeaakiabg2da9maalaaabaGaaG4m aaqaaiaaiodacaGGUaGaaGioaiaaiodacaaIYaGaaGOmaaaacqGH8a apcaWGMbGaeyOpa4ZaaSaaaeaaciGGLbGaaiiEaiaacchadaqadaqa amaalaaabaGaaG4maiaac6cacaaI4aGaaG4maiaaikdacaaIYaGaam OzaaqaaiabgYda8iaadAgacqGH+aGpaaaacaGLOaGaayzkaaGaeyOe I0IaaGymaaqaaiGacwgacaGG4bGaaiiCamaabmaabaWaaSaaaeaaca aIZaGaaiOlaiaaiIdacaaIZaGaaGOmaiaaikdacaWGMbaabaGaeyip aWJaamOzaiabg6da+aaaaiaawIcacaGLPaaaaaaaaa@5E40@  

(0.13)

As a reasonable approximation, let f= 3 3.8322 <f> MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgacqGH9a qpdaWcaaqaaiaaiodaaeaacaaIZaGaaiOlaiaaiIdacaaIZaGaaGOm aiaaikdaaaGaeyipaWJaamOzaiabg6da+aaa@4007@  and insert this into the exponentials of equation (0.13) and obtain:

 

f max 3 3.8322 <f> exp( 3 )1 exp( 3 ) = 3 3.8322 0.9502=0.7249<f> MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaWgaa WcbaGaciyBaiaacggacaGG4baabeaakiabgIKi7oaalaaabaGaaG4m aaqaaiaaiodacaGGUaGaaGioaiaaiodacaaIYaGaaGOmaaaacqGH8a apcaWGMbGaeyOpa4ZaaSaaaeaaciGGLbGaaiiEaiaacchadaqadaqa aiaaiodaaiaawIcacaGLPaaacqGHsislcaaIXaaabaGaciyzaiaacI hacaGGWbWaaeWaaeaacaaIZaaacaGLOaGaayzkaaaaaiabg2da9maa laaabaGaaG4maaqaaiaaiodacaGGUaGaaGioaiaaiodacaaIYaGaaG OmaaaacaaIWaGaaiOlaiaaiMdacaaI1aGaaGimaiaaikdacqGH9aqp caaIWaGaaiOlaiaaiEdacaaIYaGaaGinaiaaiMdacqGH8aapcaWGMb GaeyOpa4daaa@62B9@  

(0.14)