Balloon Bouncing in Vacuum

Introduction

            Everybody knows that balls successively bounce less and less high after they're dropped.  The change in height is due to a catchphrase called the "coefficient of restitution" (CR) which is less than 1.  The CR is due to the compressive heating of the ball material.  For a solid ball this compressive heating is very complicated to model but for an gas-filled ball with very thin walls an accurate animation model is possible.  That model is the goal of this animation.

 

Realization

            Since the ball must be very thin walled we will call it a balloon where the mass of the walls is much less than the mass of the gas inside.  A typical gas at standard pressure and temperature (STP) has a mass of about 1 gram per liter or 1 kilogram per cubic meter (Recall that 1 gram molecular weight of any gas at STP displaces 22.4 liters).   So for a fairly large diameter balloon it is reasonable that the gas inside have more mass than the walls of the balloon.  Further, since the mass of the balloon won't much exceed the mass of the gas that it displaces, as well as for other reasons like air drag, we will assume that the balloon bounces in vacuum. We will also assume that the distortion of the balloon walls during impact does not result in the walls absorbing significant energy.

 

Figures

Figure 1: Illustration of the animation.  The ball with the gas inside it is shown in the colliding position.  Note that the height above the floor is updated in real time in the color yellow.  The maximum bounce height (blue) and the gas kinetic energy are also plotted.

 

Math-Energy

            The total initial energy of the balloon is the energy of the gas atoms inside as well as the gravitational energy due to its center of mass height, h, above the floor from which it bounces. 

E 0 = E k0 +Mg h 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaWgaa WcbaGaaGimaaqabaGccqGH9aqpcaWGfbWaaSbaaSqaaiaadUgacaaI WaaabeaakiabgUcaRiaad2eacaWGNbGaamiAamaaBaaaleaacaaIWa aabeaaaaa@3FC8@

where Ek is the total kinetic energy of the gas atoms and, M is their total mass, and g is the acceleration of gravity.

When the ball hits the floor the first time the kinetic energy of the gas atoms will increase because of compression and therefore, since total energy is conserved, the height to which the ball bounces will be reduced.

E 1 = E 0 = E k1 +Mg h 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaWgaa WcbaGaaGymaaqabaGccqGH9aqpcaWGfbWaaSbaaSqaaiaaicdaaeqa aOGaeyypa0JaamyramaaBaaaleaacaWGRbGaaGymaaqabaGccqGHRa WkcaWGnbGaam4zaiaadIgadaWgaaWcbaGaaGymaaqabaaaaa@428B@

Solving for both h0 and h1 we obtain:

h 0 = E 0 E k0 Mg MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIgadaWgaa WcbaGaaGimaaqabaGccqGH9aqpdaWcaaqaaiaadweadaWgaaWcbaGa aGimaaqabaGccqGHsislcaWGfbWaaSbaaSqaaiaadUgacaaIWaaabe aaaOqaaiaad2eacaWGNbaaaaaa@3FED@

h 1 = E 0 E k1 Mg MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIgadaWgaa WcbaGaaGymaaqabaGccqGH9aqpdaWcaaqaaiaadweadaWgaaWcbaGa aGimaaqabaGccqGHsislcaWGfbWaaSbaaSqaaiaadUgacaaIXaaabe aaaOqaaiaad2eacaWGNbaaaaaa@3FEF@

More importantly, the change in h is given by:

δh= ( E k1 E k0 ) Mg = δ E k Mg MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaadI gacqGH9aqpdaWcaaqaaiabgkHiTiaacIcacaWGfbWaaSbaaSqaaiaa dUgacaaIXaaabeaakiabgkHiTiaadweadaWgaaWcbaGaam4Aaiaaic daaeqaaOGaaiykaaqaaiaad2eacaWGNbaaaiabg2da9maalaaabaGa eyOeI0IaeqiTdqMaamyramaaBaaaleaacaWGRbaabeaaaOqaaiaad2 eacaWGNbaaaaaa@4B2F@

where we recall that δEk will be a positive number.

Math-Collision with Floor

            We will choose to model the indentation of the balloon by using a sinusoid. 

r(t)= r 0 dsin[ω(t t c )] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhacaGGOa GaamiDaiaacMcacqGH9aqpcaWGYbWaaSbaaSqaaiaaicdaaeqaaOGa eyOeI0IaamizaiGacohacaGGPbGaaiOBaiaacUfacqaHjpWDcaGGOa GaamiDaiabgkHiTiaadshadaWgaaWcbaGaam4yaaqabaGccaGGPaGa aiyxaaaa@49B2@

where d is the maximum indentation, ω is to be computed and tc is the time of the collision.  The speed of the original center of the balloon at the moment of collision will be designated vc and the initial speed of indentation must match vc.

dr dt ) t= t c =ωd= v c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabiaabaWaaS aaaeaacaWGKbGaamOCaaqaaiaadsgacaWG0baaaaGaayzkaaWaaSba aSqaaiaadshacqGH9aqpcaWG0bWaaSbaaWqaaiaadogaaeqaaaWcbe aakiabg2da9iabeM8a3jaadsgacqGH9aqpcaWG2bWaaSbaaSqaaiaa dogaaeqaaaaa@45A4@  

where from the previous section:

v c = 2g h 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAhadaWgaa WcbaGaam4yaaqabaGccqGH9aqpdaGcaaqaaiaaikdacaWGNbGaamiA amaaBaaaleaacaaIWaaabeaaaeqaaaaa@3C95@

which allows us to compute ω.

After the initial impact, the balloon will remain in contact with the floor for a time tf.  That would mean that the original center of the balloon will continue to move first downward and then upward at some computed rate to match the indentation and recovery of the indentation.  In order to stay in contact the downward speed of the original center of the balloon's y position must follow the time dependence:

v y (t)= v c cos[ω(t t c )] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAhadaWgaa WcbaGaamyEaaqabaGccaGGOaGaamiDaiaacMcacqGH9aqpcaWG2bWa aSbaaSqaaiaadogaaeqaaOGaci4yaiaac+gacaGGZbGaai4waiabeM 8a3jaacIcacaWG0bGaeyOeI0IaamiDamaaBaaaleaacaWGJbaabeaa kiaacMcacaGGDbaaaa@4941@

 

In order to take into account the fact that the kinetic energy associated with the balloon's movement will be reduced on the upward leg of its journey, we will modify the above equation with an exponential rolloff of vc.

v y (t)= v c exp( t t c τ E )cos[ω(t t c )] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAhadaWgaa WcbaGaamyEaaqabaGccaGGOaGaamiDaiaacMcacqGH9aqpcaWG2bWa aSbaaSqaaiaadogaaeqaaOGaciyzaiaacIhacaGGWbWaaeWaaeaacq GHsisldaWcaaqaaiaadshacqGHsislcaWG0bWaaSbaaSqaaiaadoga aeqaaaGcbaGaeqiXdq3aaSbaaSqaaiaadweaaeqaaaaaaOGaayjkai aawMcaaiGacogacaGGVbGaai4CaiaacUfacqaHjpWDcaGGOaGaamiD aiabgkHiTiaadshadaWgaaWcbaGaam4yaaqabaGccaGGPaGaaiyxaa aa@5564@

where τE is some time constant that must be computed from the internal energy gain of the gas.

The recovery of the balloon will stop at

ω( t s t c )=π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3jaacI cacaWG0bWaaSbaaSqaaiaadohaaeqaaOGaeyOeI0IaamiDamaaBaaa leaacaWGJbaabeaakiaacMcacqGH9aqpcqaHapaCaaa@40FF@

where ts is the stopping time at which time the original center of the balloon will have  speed:

v y ( t s )= v c exp( π ω τ E ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAhadaWgaa WcbaGaamyEaaqabaGccaGGOaGaamiDamaaBaaaleaacaWGZbaabeaa kiaacMcacqGH9aqpcqGHsislcaWG2bWaaSbaaSqaaiaadogaaeqaaO GaciyzaiaacIhacaGGWbWaaeWaaeaacqGHsisldaWcaaqaaiabec8a WbqaaiabeM8a3jabes8a0naaBaaaleaacaWGfbaabeaaaaaakiaawI cacaGLPaaaaaa@4B56@

For a 10% loss of speed, the value of tE would then be:

exp( π ω τ E )= v v c =0.9 π ω τ E =ln(0.9) ω τ E = π ln(0.9) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaciyzai aacIhacaGGWbWaaeWaaeaacqGHsisldaWcaaqaaiabec8aWbqaaiab eM8a3jabes8a0naaBaaaleaacaWGfbaabeaaaaaakiaawIcacaGLPa aacqGH9aqpdaWcaaqaaiaadAhaaeaacaWG2bWaaSbaaSqaaiaadoga aeqaaaaakiabg2da9iaaicdacaGGUaGaaGyoaaqaamaalaaabaGaeq iWdahabaGaeqyYdCNaeqiXdq3aaSbaaSqaaiaadweaaeqaaaaakiab g2da9iabgkHiTiGacYgacaGGUbGaaiikaiaaicdacaGGUaGaaGyoai aacMcaaeaacqaHjpWDcqaHepaDdaWgaaWcbaGaamyraaqabaGccqGH 9aqpcqGHsisldaWcaaqaaiabec8aWbqaaiGacYgacaGGUbGaaiikai aaicdacaGGUaGaaGyoaiaacMcaaaaaaaa@647E@

Since the kinetic energy is proportional to the square of vy(ts), the change in maximum ball height will be

  mgδh= 1 2 m( v ( t s ) 2 v c 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gacaWGNb GaeqiTdqMaamiAaiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaGa amyBamaabmaabaGaamODaiaacIcacaWG0bWaaSbaaSqaaiaadohaae qaaOGaaiykamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadAhadaqh aaWcbaGaam4yaaqaaiaaikdaaaaakiaawIcacaGLPaaaaaa@4894@

where, obviously, δh will be a negative number.

In fact we won't have information about the speed (or energy) loss until the ball has finished its indentation and recovery.  So we'll need to compute the value of τE from previous test experiments.