Derivation of Bose Distribution

This document will try to document the way we compute the probability of occupation by n indistinguishable particles of the ith energy level which has g sub-levels.  I have found that the best way to keep track of the occupations of the various g sub-level populations is to assign a number to each sub level and then tabulate the sums of these numbers for all possible indistinguishable sets of sums.  This can be motivated by assuming that each of the sub-levels has a very small magnetic energy splitting and then the sum of these energy values will distinguish it from other sub-levels.  In the end, we can simply remove the splitting but the sub-level distribution will  remain.

 

The number of different sums we can get for n particles assigned to levels with g degeneracy is the binomial factor

                                                w(n,g)= (n+g1)! n!(g1)! ( n+g1 g1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEhacaGGOa GaamOBaiaacYcacaWGNbGaaiykaiabg2da9maalaaabaGaaiikaiaa d6gacqGHRaWkcaWGNbGaeyOeI0IaaGymaiaacMcacaGGHaaabaGaam OBaiaacgcacaGGOaGaam4zaiabgkHiTiaaigdacaGGPaGaaiyiaaaa cqGHHjIUdaqadaabaeqabaGaamOBaiabgUcaRiaadEgacqGHsislca aIXaaabaGaaGPaVlaaykW7caaMc8Uaam4zaiabgkHiTiaaigdaaaGa ayjkaiaawMcaaaaa@576D@       (1.1)

If the Bose character of the particle is to be interesting, then we should have many more particles than there are degeneracies, i.e. n>>g.  The opposite situation is when n<<g  very low density gas which characterizes Maxwell-Boltzmann statistics.

The total number of ways that all N indistinguishable particles with ni in each level with  gi sub-levels or degeneracies is the product of all the binomial factors for the ni+gi-1 terms

 

W= i w( n i , g i )= i ( n i + g i 1)! n i !( g i 1)! MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEfacqGH9a qpdaqeqbqaaiaadEhacaGGOaGaamOBamaaBaaaleaacaWGPbaabeaa kiaacYcacaWGNbWaaSbaaSqaaiaadMgaaeqaaOGaaiykaiabg2da9m aarafabaWaaSaaaeaacaGGOaGaamOBamaaBaaaleaacaWGPbaabeaa kiabgUcaRiaadEgadaWgaaWcbaGaamyAaaqabaGccqGHsislcaaIXa GaaiykaiaacgcaaeaacaWGUbWaaSbaaSqaaiaadMgaaeqaaOGaaiyi aiaacIcacaGGNbWaaSbaaSqaaiaadMgaaeqaaOGaeyOeI0IaaGymai aacMcacaGGHaaaaaWcbaGaamyAaaqab0Gaey4dIunaaSqaaiaadMga aeqaniabg+Givdaaaa@572F@  

(1.2)

Use Stirling's approximation for the factorials:

x!= x x e x 2πx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhacaGGHa Gaeyypa0JaamiEamaaCaaaleqabaGaamiEaaaakiaadwgadaahaaWc beqaaiabgkHiTiaadIhaaaGcdaGcaaqaaiaaikdacqaHapaCcaWG4b aaleqaaaaa@4160@  

(1.3)

( n i + g i 1)! n i !( g i 1)! = ( n i + g i 1) ( n i + g i 1) e ( n i + g i 1) 2π( n i + g i 1) n n i e n i 2π n i ( g i 1)! MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaai ikaiaad6gadaWgaaWcbaGaamyAaaqabaGccqGHRaWkcaWGNbWaaSba aSqaaiaadMgaaeqaaOGaeyOeI0IaaGymaiaacMcacaGGHaaabaGaam OBamaaBaaaleaacaWGPbaabeaakiaacgcacaGGOaGaai4zamaaBaaa leaacaWGPbaabeaakiabgkHiTiaaigdacaGGPaGaaiyiaaaacqGH9a qpdaWcaaqaaiaacIcacaWGUbWaaSbaaSqaaiaadMgaaeqaaOGaey4k aSIaam4zamaaBaaaleaacaWGPbaabeaakiabgkHiTiaaigdacaGGPa WaaWbaaSqabeaacaGGOaGaamOBamaaBaaameaacaWGPbaabeaaliab gUcaRiaadEgadaWgaaadbaGaamyAaaqabaWccqGHsislcaaIXaGaai ykaaaakiaadwgadaahaaWcbeqaaiabgkHiTiaacIcacaWGUbWaaSba aWqaaiaadMgaaeqaaSGaey4kaSIaam4zamaaBaaameaacaWGPbaabe aaliabgkHiTiaaigdacaGGPaaaaOWaaOaaaeaacaaIYaGaeqiWdaNa aiikaiaad6gadaWgaaWcbaGaamyAaaqabaGccqGHRaWkcaWGNbWaaS baaSqaaiaadMgaaeqaaOGaeyOeI0IaaGymaiaacMcaaSqabaaakeaa caWGUbWaaWbaaSqabeaacaWGUbWaaSbaaWqaaiaadMgaaeqaaaaaki aadwgadaahaaWcbeqaaiabgkHiTiaad6gadaWgaaadbaGaamyAaaqa baaaaOWaaOaaaeaacaaIYaGaeqiWdaNaamOBamaaBaaaleaacaWGPb aabeaaaeqaaOGaaiikaiaadEgadaWgaaWcbaGaamyAaaqabaGccqGH sislcaaIXaGaaiykaiaacgcaaaaaaa@7EEE@  

(1.4)

 

The number of particles, ni, in each energy level εi will be such that the value of W is maximized taking into account that the total number of particles is constant at N and the total energy is constant at E.

We wish to find the values of each ni for which W is a maximum taking into account that the total number of particles, N, is constant and the total energy is constant.  To find ni while keeping N and E constant, we use Lagrange multipliers for the particle sums and the total energy. Then the equation from which to find ni becomes:

n i [ w( n i , g i )+α( N i n i )+β( E i n i ε i ) ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIylabaGaeyOaIyRaamOBamaaBaaaleaacaWGPbaabeaaaaGcdaWa daqaaiaadEhacaGGOaGaamOBamaaBaaaleaacaWGPbaabeaakiaacY cacaWGNbWaaSbaaSqaaiaadMgaaeqaaOGaaiykaiabgUcaRiabeg7a HnaabmaabaGaamOtaiabgkHiTmaaqafabaGaamOBamaaBaaaleaaca WGPbaabeaaaeaacaWGPbaabeqdcqGHris5aaGccaGLOaGaayzkaaGa ey4kaSIaeqOSdi2aaeWaaeaacaWGfbGaeyOeI0YaaabuaeaacaWGUb WaaSbaaSqaaiaadMgaaeqaaOGaeqyTdu2aaSbaaSqaaiaadMgaaeqa aaqaaiaadMgaaeqaniabggHiLdaakiaawIcacaGLPaaaaiaawUfaca GLDbaacqGH9aqpcaaIWaaaaa@5E4E@  

(1.5)

It is easier to find the maximum if we first take the natural logarithm of the expression for w.

 

Using equation (1.4) in equation (1.5) we obtain:

ln[ ( n i + g i 1)! n i !( g i 1)! ]ln[ ( n i + g i 1) ( n i + g i 1) e ( n i + g i 1) 2π( n i + g i 1) n n i e n i 2π n i ( g i 1)! ] ( n i + g i 1)ln( n i + g i 1)( n i + g i 1)+ n i ln( n i ) n i ln[( g i 1)!] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaciiBai aac6gadaWadaqaamaalaaabaGaaiikaiaad6gadaWgaaWcbaGaamyA aaqabaGccqGHRaWkcaWGNbWaaSbaaSqaaiaadMgaaeqaaOGaeyOeI0 IaaGymaiaacMcacaGGHaaabaGaamOBamaaBaaaleaacaWGPbaabeaa kiaacgcacaGGOaGaai4zamaaBaaaleaacaWGPbaabeaakiabgkHiTi aaigdacaGGPaGaaiyiaaaaaiaawUfacaGLDbaacqGHijYUciGGSbGa aiOBamaadmaabaWaaSaaaeaacaGGOaGaamOBamaaBaaaleaacaWGPb aabeaakiabgUcaRiaadEgadaWgaaWcbaGaamyAaaqabaGccqGHsisl caaIXaGaaiykamaaCaaaleqabaGaaiikaiaad6gadaWgaaadbaGaam yAaaqabaWccqGHRaWkcaWGNbWaaSbaaWqaaiaadMgaaeqaaSGaeyOe I0IaaGymaiaacMcaaaGccaWGLbWaaWbaaSqabeaacqGHsislcaGGOa GaamOBamaaBaaameaacaWGPbaabeaaliabgUcaRiaadEgadaWgaaad baGaamyAaaqabaWccqGHsislcaaIXaGaaiykaaaakmaakaaabaGaaG Omaiabec8aWjaacIcacaWGUbWaaSbaaSqaaiaadMgaaeqaaOGaey4k aSIaam4zamaaBaaaleaacaWGPbaabeaakiabgkHiTiaaigdacaGGPa aaleqaaaGcbaGaamOBamaaCaaaleqabaGaamOBamaaBaaameaacaWG PbaabeaaaaGccaWGLbWaaWbaaSqabeaacqGHsislcaWGUbWaaSbaaW qaaiaadMgaaeqaaaaakmaakaaabaGaaGOmaiabec8aWjaad6gadaWg aaWcbaGaamyAaaqabaaabeaakiaacIcacaWGNbWaaSbaaSqaaiaadM gaaeqaaOGaeyOeI0IaaGymaiaacMcacaGGHaaaaaGaay5waiaaw2fa aaqaaiabgIKi7kaacIcacaWGUbWaaSbaaSqaaiaadMgaaeqaaOGaey 4kaSIaam4zamaaBaaaleaacaWGPbaabeaakiabgkHiTiaaigdacaGG PaGaaiiBaiaac6gacaGGOaGaamOBamaaBaaaleaacaWGPbaabeaaki abgUcaRiaadEgadaWgaaWcbaGaamyAaaqabaGccqGHsislcaaIXaGa aiykaiabgkHiTiaacIcacaWGUbWaaSbaaSqaaiaadMgaaeqaaOGaey 4kaSIaam4zamaaBaaaleaacaWGPbaabeaakiabgkHiTiaaigdacaGG PaGaey4kaSIaamOBamaaBaaaleaacaWGPbaabeaakiGacYgacaGGUb Gaaiikaiaad6gadaWgaaWcbaGaamyAaaqabaGccaGGPaGaeyOeI0Ia amOBamaaBaaaleaacaWGPbaabeaakiabgkHiTiGacYgacaGGUbGaai 4waiaacIcacaWGNbWaaSbaaSqaaiaadMgaaeqaaOGaeyOeI0IaaGym aiaacMcacaGGHaGaaiyxaaaaaa@B982@  

(1.6)

where I've dropped the square root terms.  If we also make the assumption that ni>>gi then we can further simplify the above expression.  Let’s rename the factorial expression on the left to be w(ni,gi)

 

ln[ w i ( n i , g i )]( n i + g i 1)ln( n i + g i 1) n i ln( n i )ln[( g i 1)!] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGacYgacaGGUb Gaai4waiaadEhadaWgaaWcbaGaamyAaaqabaGccaGGOaGaamOBamaa BaaaleaacaWGPbaabeaakiaacYcacaWGNbWaaSbaaSqaaiaadMgaae qaaOGaaiykaiaac2facqGHijYUcaGGOaGaamOBamaaBaaaleaacaWG PbaabeaakiabgUcaRiaadEgadaWgaaWcbaGaamyAaaqabaGccqGHsi slcaaIXaGaaiykaiaacYgacaGGUbGaaiikaiaad6gadaWgaaWcbaGa amyAaaqabaGccqGHRaWkcaWGNbWaaSbaaSqaaiaadMgaaeqaaOGaey OeI0IaaGymaiaacMcacqGHsislcaWGUbWaaSbaaSqaaiaadMgaaeqa aOGaciiBaiaac6gacaGGOaGaamOBamaaBaaaleaacaWGPbaabeaaki aacMcacqGHsislcaGGSbGaaiOBaiaacUfacaGGOaGaai4zamaaBaaa leaacaWGPbaabeaakiabgkHiTiaaigdacaGGPaGaaiyiaiaac2faaa a@6822@  

(1.7)

We will need the derivative of wi with respect to ni:

[ln(w)] n i =ln( n i + g i 1)+1ln( n i )+1=ln( n i + g i 1 n i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIyRaai4waiGacYgacaGGUbGaaiikaiaadEhacaGGPaGaaiyxaaqa aiabgkGi2kaad6gadaWgaaWcbaGaamyAaaqabaaaaOGaeyypa0Jaai iBaiaac6gacaGGOaGaamOBamaaBaaaleaacaWGPbaabeaakiabgUca RiaadEgadaWgaaWcbaGaamyAaaqabaGccqGHsislcaaIXaGaaiykai abgUcaRiaaigdacqGHsislciGGSbGaaiOBaiaacIcacaWGUbWaaSba aSqaaiaadMgaaeqaaOGaaiykaiabgUcaRiaaigdacqGH9aqpcaGGSb GaaiOBamaabmaabaWaaSaaaeaacaWGUbWaaSbaaSqaaiaadMgaaeqa aOGaey4kaSIaam4zamaaBaaaleaacaWGPbaabeaakiabgkHiTiaaig daaeaacaWGUbWaaSbaaSqaaiaadMgaaeqaaaaaaOGaayjkaiaawMca aaaa@628D@  

(1.8)

Including the particle sums and energy sum derivative terms in equation (1.5) we have:

ln( n i + g i 1 n i )αβ ε i =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacYgacaGGUb WaaeWaaeaadaWcaaqaaiaad6gadaWgaaWcbaGaamyAaaqabaGccqGH RaWkcaWGNbWaaSbaaSqaaiaadMgaaeqaaOGaeyOeI0IaaGymaaqaai aad6gadaWgaaWcbaGaamyAaaqabaaaaaGccaGLOaGaayzkaaGaeyOe I0IaeqySdeMaeyOeI0IaeqOSdiMaeqyTdu2aaSbaaSqaaiaadMgaae qaaOGaeyypa0JaaGimaaaa@4BD3@  

(1.9)

taking the exponential of both sides we have:

( n i + g i 1 n i )= e (α+β ε i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaWaaS aaaeaacaWGUbWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSIaam4zamaa BaaaleaacaWGPbaabeaakiabgkHiTiaaigdaaeaacaWGUbWaaSbaaS qaaiaadMgaaeqaaaaaaOGaayjkaiaawMcaaiabg2da9iaadwgadaah aaWcbeqaaiaacIcacqaHXoqycqGHRaWkcqaHYoGycqaH1oqzdaWgaa adbaGaamyAaaqabaWccaGGPaaaaaaa@4AB1@  

(1.10)

Solving for ni we obtain:

 

n i + g i 1= n i e (α+β ε i ) n i [1 e (α+β ε i ) ]=( g i 1) n i = g i 1 e (α+β ε i ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamOBam aaBaaaleaacaWGPbaabeaakiabgUcaRiaadEgadaWgaaWcbaGaamyA aaqabaGccqGHsislcaaIXaGaeyypa0JaamOBamaaBaaaleaacaWGPb aabeaakiaadwgadaahaaWcbeqaaiaacIcacqaHXoqycqGHRaWkcqaH YoGycqaH1oqzdaWgaaadbaGaamyAaaqabaWccaGGPaaaaaGcbaGaam OBamaaBaaaleaacaWGPbaabeaakiaacUfacaaIXaGaeyOeI0Iaamyz amaaCaaaleqabaGaaiikaiabeg7aHjabgUcaRiabek7aIjabew7aLn aaBaaameaacaWGPbaabeaaliaacMcaaaGccaGGDbGaeyypa0JaeyOe I0IaaiikaiaadEgadaWgaaWcbaGaamyAaaqabaGccqGHsislcaaIXa Gaaiykaaqaaiaad6gadaWgaaWcbaGaamyAaaqabaGccqGH9aqpdaWc aaqaaiaadEgadaWgaaWcbaGaamyAaaqabaGccqGHsislcaaIXaaaba GaamyzamaaCaaaleqabaGaaiikaiabeg7aHjabgUcaRiabek7aIjab ew7aLnaaBaaameaacaWGPbaabeaaliaacMcaaaGccqGHsislcaaIXa aaaaaaaa@710C@  

(1.11)

Equation (1.11)  has the form of the Bose distribution and is better recognized with the substitution

chemicalpotentialμ:α= μ k B T BoltzmannFactor:β= 1 k B T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaam4yai aadIgacaWGLbGaamyBaiaadMgacaWGJbGaamyyaiaadYgacaaMc8Ua amiCaiaad+gacaWG0bGaamyzaiaad6gacaWG0bGaamyAaiaadggaca WGSbGaaGPaVlabeY7aTjaacQdacqaHXoqycqGH9aqpcqGHsisldaWc aaqaaiabeY7aTbqaaiaadUgadaWgaaWcbaGaamOqaaqabaGccaWGub aaaaqaaiaadkeacaWGVbGaamiBaiaadshacaWG6bGaamyBaiaadgga caWGUbGaamOBaiaaykW7caWGgbGaamyyaiaadogacaWG0bGaam4Bai aadkhacaGG6aGaeqOSdiMaeyypa0ZaaSaaaeaacaaIXaaabaGaam4A amaaBaaaleaacaWGcbaabeaakiaadsfaaaaaaaa@69D5@  

(1.12)

so that we have:

n i = ( g i 1 ) e ( ε i μ k B T ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gadaWgaa WcbaGaamyAaaqabaGccqGH9aqpdaWcaaqaamaabmaabaGaam4zamaa BaaaleaacaWGPbaabeaakiabgkHiTiaaigdaaiaawIcacaGLPaaaae aacaWGLbWaaWbaaSqabeaadaqadaqaamaalaaabaGaeqyTdu2aaSba aWqaaiaadMgaaeqaaSGaeyOeI0IaeqiVd0gabaGaam4AamaaBaaame aacaWGcbaabeaaliaadsfaaaaacaGLOaGaayzkaaaaaOGaeyOeI0Ia aGymaaaaaaa@4AF3@  

(1.13)