Atom Motion in a Circular Two Dimensional Potential Well

Introduction

            This is a hard sphere model of motion of atoms in a circular two dimensional potential well.  It is the classical analog of tunneling of alpha particles out of an unstable nucleus.

 

 

Figures

Figure 1: Sloped Potential Energy Well

 

Figure 2: Stepped Potential Energy Well

 

Mathematics for Classical (particle) Case

            Other than the atom-atom collisions that have already been well documented and the collisions with the outer radius which has also been documented, we have to take into account the effect of the sloped or stepped potential on the trajectories of the particles. 

Sloped Potential

            The motion in the sloped potential is easier to understand than that in the stepped potential so we'll do that calculation first.  First we separate the particle velocity into its radial and tangential components:

v r =( V r ^ ) r ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahAhadaWgaa WcbaGaaCOCaaqabaGccqGH9aqpdaqadaqaaiaahAfacqGHIaYTceWH YbGbaKaaaiaawIcacaGLPaaaceWHYbGbaKaaaaa@3F24@

v t =( V t ^ ) t ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahAhadaWgaa WcbaGaamiDaaqabaGccqGH9aqpdaqadaqaaiaahAfacqGHIaYTceWH 0bGbaKaaaiaawIcacaGLPaaaceWH0bGbaKaaaaa@3F26@

where V is the velocity vector and r and t (with the hat) are the unit vectors in the radial and tangential directions at point (x,y)

r ^ = x x ^ +y y ^ x 2 + y 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqahkhagaqcai abg2da9maalaaabaGaamiEaiqahIhagaqcaiabgUcaRiaadMhaceWH 5bGbaKaaaeaadaGcaaqaaiaadIhadaahaaWcbeqaaiaaikdaaaGccq GHRaWkcaWG5bWaaWbaaSqabeaacaaIYaaaaaqabaaaaaaa@41D5@

t ^ = y x ^ +x y ^ x 2 + y 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqahshagaqcai abg2da9maalaaabaGaeyOeI0IaamyEaiqahIhagaqcaiabgUcaRiaa dIhaceWH5bGbaKaaaeaadaGcaaqaaiaadIhadaahaaWcbeqaaiaaik daaaGccqGHRaWkcaWG5bWaaWbaaSqabeaacaaIYaaaaaqabaaaaaaa @42C4@

and x and y (with the hats) are unit vectors in the x and y directions.  Since the potential variation is radial the force, F, on the atoms is radial and therefore only the radial component of the momentum is affected.

m dv dt =F= dU dr r ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaWcaa qaaiaadsgacaWH2baabaGaamizaiaadshaaaGaeyypa0JaaCOraiab g2da9iabgkHiTmaalaaabaGaamizaiaadwfaaeaacaWGKbGaamOCaa aaceWHYbGbaKaaaaa@433D@

where m is the mass of the particle and U is the potential energy.  The expression for the sloped potential at radius r is

V(r)= U max r r I r O r I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAfacaGGOa GaamOCaiaacMcacqGH9aqpcaWGvbWaaSbaaSqaaiGac2gacaGGHbGa aiiEaaqabaGcdaWcaaqaaiaadkhacqGHsislcaWGYbWaaSbaaSqaai aadMeaaeqaaaGcbaGaamOCamaaBaaaleaacaWGpbaabeaakiabgkHi TiaadkhadaWgaaWcbaGaamysaaqabaaaaaaa@46CE@

where rI is the inner radius of the potential ring and rO is the outer radius and r>rI .

So an expression for F is

F= U max 1 r O r I r ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeacqGH9a qpcqGHsislcaWGvbWaaSbaaSqaaiGac2gacaGGHbGaaiiEaaqabaGc daWcaaqaaiaaigdaaeaacaWGYbWaaSbaaSqaaiaad+eaaeqaaOGaey OeI0IaamOCamaaBaaaleaacaWGjbaabeaaaaGcceWHYbGbaKaaaaa@434C@

Therefore, for a single increment of time, the change in velocity is:

δv= U max m 1 r O r I r ^ δt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahs7acaWH2b Gaeyypa0JaeyOeI0YaaSaaaeaacaWGvbWaaSbaaSqaaiGac2gacaGG HbGaaiiEaaqabaaakeaacaWGTbaaamaalaaabaGaaGymaaqaaiaadk hadaWgaaWcbaGaam4taaqabaGccqGHsislcaWGYbWaaSbaaSqaaiaa dMeaaeqaaaaakiqahkhagaqcaiabes7aKjaadshaaaa@4860@

Stepped Potential

            The effect of the potential step is to cause the velocity to instantaneously change direction similar to refraction of light at the surface of an index of refraction discontinuity.  One may view this as a change of the radial component of the energy, Er, of the particle.   Recall the expression for the radial component of the velocity:

v r =( V r ^ ) r ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahAhadaWgaa WcbaGaaCOCaaqabaGccqGH9aqpdaqadaqaaiaahAfacqGHIaYTceWH YbGbaKaaaiaawIcacaGLPaaaceWHYbGbaKaaaaa@3F24@

Prior to entering the potential, the radial energy is:

E r = m 2 v r 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaWgaa WcbaGaamOCaaqabaGccqGH9aqpdaWcaaqaaiaad2gaaeaacaaIYaaa aiaadAhadaqhaaWcbaGaamOCaaqaaiaaikdaaaaaaa@3D81@

When entering the potential from r<rI the new value of Er becomes:

E r ' = m 2 v r 2 U max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaqhaa WcbaGaamOCaaqaaiaacEcaaaGccqGH9aqpdaWcaaqaaiaad2gaaeaa caaIYaaaaiaadAhadaqhaaWcbaGaamOCaaqaaiaaikdaaaGccqGHsi slcaWGvbWaaSbaaSqaaiGac2gacaGGHbGaaiiEaaqabaaaaa@42FE@

so that then the new value of vr becomes:

v r ' = 2 E r ' m = v r 2 m U max 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAhadaqhaa WcbaGaamOCaaqaaiaacEcaaaGccqGH9aqpdaGcaaqaamaalaaabaGa aGOmaiaadweadaqhaaWcbaGaamOCaaqaaiaacEcaaaaakeaacaWGTb aaaaWcbeaakiabg2da9maakaaabaGaamODamaaDaaaleaacaWGYbaa baGaaGOmaaaakiabgkHiTmaalaaabaGaamyBaiaadwfadaWgaaWcba GaciyBaiaacggacaGG4baabeaaaOqaaiaaikdaaaaaleqaaaaa@48E0@

 

When departing the potential from r>rI the new value of Er becomes:

E r ' = m 2 v r 2 + U max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaqhaa WcbaGaamOCaaqaaiaacEcaaaGccqGH9aqpdaWcaaqaaiaad2gaaeaa caaIYaaaaiaadAhadaqhaaWcbaGaamOCaaqaaiaaikdaaaGccqGHRa WkcaWGvbWaaSbaaSqaaiGac2gacaGGHbGaaiiEaaqabaaaaa@42F3@

so that then the new value of vr becomes:

v r ' = 2 E r ' m = v r 2 + m U max 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAhadaqhaa WcbaGaamOCaaqaaiaacEcaaaGccqGH9aqpdaGcaaqaamaalaaabaGa aGOmaiaadweadaqhaaWcbaGaamOCaaqaaiaacEcaaaaakeaacaWGTb aaaaWcbeaakiabg2da9maakaaabaGaamODamaaDaaaleaacaWGYbaa baGaaGOmaaaakiabgUcaRmaalaaabaGaamyBaiaadwfadaWgaaWcba GaciyBaiaacggacaGG4baabeaaaOqaaiaaikdaaaaaleqaaaaa@48D5@

These equations are perfectly analogous to Snell's laws of refraction at the interface between two refractive media where the medium with the lower index of refraction is where the potential resides. Let our refractive indexes be:

n 1 2 = E E n 2 2 = EU E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamOBam aaDaaaleaacaaIXaaabaGaaGOmaaaakiabg2da9maalaaabaGaamyr aaqaaiaadweaaaaabaGaamOBamaaDaaaleaacaaIYaaabaGaaGOmaa aakiabg2da9maalaaabaGaamyraiabgkHiTiaadwfaaeaacaWGfbaa aaaaaa@4250@

The angles with respect to the interface normal are given by the ratio of the tangential to the total velocity:

sin( θ 1 )= E t E sin( θ 2 )= E t EU MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaci4Cai aacMgacaGGUbGaaiikaiabeI7aXnaaBaaaleaacaaIXaaabeaakiaa cMcacqGH9aqpdaGcaaqaamaalaaabaGaamyramaaBaaaleaacaWG0b aabeaaaOqaaiaadweaaaaaleqaaaGcbaGaci4CaiaacMgacaGGUbGa aiikaiabeI7aXnaaBaaaleaacaaIYaaabeaakiaacMcacqGH9aqpda GcaaqaamaalaaabaGaamyramaaBaaaleaacaWG0baabeaaaOqaaiaa dweacqGHsislcaWGvbaaaaWcbeaaaaaa@4D5C@

Therefore

n 1 sin( θ 1 )= E t E n 2 sin( θ 2 )= EU E E t EU = E t E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamOBam aaBaaaleaacaaIXaaabeaakiGacohacaGGPbGaaiOBaiaacIcacqaH 4oqCdaWgaaWcbaGaaGymaaqabaGccaGGPaGaeyypa0ZaaOaaaeaada WcaaqaaiaadweadaWgaaWcbaGaamiDaaqabaaakeaacaWGfbaaaaWc beaaaOqaaiaad6gadaWgaaWcbaGaaGOmaaqabaGcciGGZbGaaiyAai aac6gacaGGOaGaeqiUde3aaSbaaSqaaiaaikdaaeqaaOGaaiykaiab g2da9maakaaabaWaaSaaaeaacaWGfbGaeyOeI0Iaamyvaaqaaiaadw eaaaaaleqaaOWaaOaaaeaadaWcaaqaaiaadweadaWgaaWcbaGaamiD aaqabaaakeaacaWGfbGaeyOeI0IaamyvaaaaaSqabaGccqGH9aqpda GcaaqaamaalaaabaGaamyramaaBaaaleaacaWG0baabeaaaOqaaiaa dweaaaaaleqaaaaaaa@58B3@

Equality of these last two equations constitutes Snell's law of refraction. 

To derive Snell's refraction law for light waves we must make the ansatz that the tangential component of the wave vector must be the same on both sides of the interface in order to preserve the microscopic continuity of the fields.  Since the wave vector is

k= k t t ^ + k r r ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahUgacqGH9a qpcaWGRbWaaSbaaSqaaiaadshaaeqaaOGabCiDayaajaGaey4kaSIa am4AamaaBaaaleaacaWGYbaabeaakiqahkhagaqcaiaaykW7aaa@40A6@

and the values of |k| are

| k 1 |= k 1 = n 1 ω c | k 2 |= k 2 = n 2 ω c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaWaaqWaae aacaWHRbWaaSbaaSqaaiaahgdaaeqaaaGccaGLhWUaayjcSdGaeyyp a0Jaam4AamaaBaaaleaacaaIXaaabeaakiabg2da9iaad6gadaWgaa WcbaGaaGymaaqabaGcdaWcaaqaaiabeM8a3bqaaiaadogaaaaabaWa aqWaaeaacaWHRbWaaSbaaSqaaiaaikdaaeqaaaGccaGLhWUaayjcSd Gaeyypa0Jaam4AamaaBaaaleaacaaIYaaabeaakiabg2da9iaad6ga daWgaaWcbaGaaGOmaaqabaGcdaWcaaqaaiabeM8a3bqaaiaadogaaa aaaaa@512E@

while the values of sin(θ) are

sin( θ 1 )= k t k 1 sin( θ 2 )= k t k 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaci4Cai aacMgacaGGUbGaaiikaiabeI7aXnaaBaaaleaacaWHXaaabeaakiaa cMcacqGH9aqpdaWcaaqaaiaadUgadaWgaaWcbaGaamiDaaqabaaake aacaWGRbWaaSbaaSqaaiaaigdaaeqaaaaaaOqaaiGacohacaGGPbGa aiOBaiaacIcacqaH4oqCdaWgaaWcbaGaaGOmaaqabaGccaGGPaGaey ypa0ZaaSaaaeaacaWGRbWaaSbaaSqaaiaadshaaeqaaaGcbaGaam4A amaaBaaaleaacaaIYaaabeaaaaaaaaa@4DC5@

which, combined with the previous two equations results in

n 2 ω c sin( θ 2 )= k t = n 1 ω c sin( θ 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gadaWgaa WcbaGaaGOmaaqabaGcdaWcaaqaaiabeM8a3bqaaiaadogaaaGaci4C aiaacMgacaGGUbGaaiikaiabeI7aXnaaBaaaleaacaaIYaaabeaaki aacMcacqGH9aqpcaWGRbWaaSbaaSqaaiaadshaaeqaaOGaeyypa0Ja amOBamaaBaaaleaacaaIXaaabeaakmaalaaabaGaeqyYdChabaGaam 4yaaaaciGGZbGaaiyAaiaac6gacaGGOaGaeqiUde3aaSbaaSqaaiaa igdaaeqaaOGaaiykaaaa@511A@

which is Snell's law of refraction.

Differential Equations for EM Waves and Quantum Waves

Electromagnetic wave equation with complex permittivity ε

2 Eεμ ω 2 E=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgEGirpaaCa aaleqabaGaaGOmaaaakiaadweacqGHsislcqaH1oqzcqaH8oqBcqaH jpWDdaahaaWcbeqaaiaaikdaaaGccaWGfbGaeyypa0JaaGimaaaa@42C2@

Try solution:

E= E 0 e αz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweacqGH9a qpcaWGfbWaaSbaaSqaaiaaicdaaeqaaOGaamyzamaaCaaaleqabaGa eqySdeMaamOEaaaaaaa@3D2A@

E 0 α 2 εμ ω 2 E 0 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiaadw eadaWgaaWcbaGaaGimaaqabaGccqaHXoqydaahaaWcbeqaaiaaikda aaGccqGHsislcqaH1oqzcqaH8oqBcqaHjpWDdaahaaWcbeqaaiaaik daaaGccaWGfbWaaSbaaSqaaiaaicdaaeqaaOGaeyypa0JaaGimaaaa @45A8@

α=iω εμ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHjabg2 da9iaadMgacqaHjpWDdaGcaaqaaiabew7aLjabeY7aTbWcbeaaaaa@3EC3@

Rename iα to be k, the wave vector:

k=ω ( ε R +i ε I )μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgacqGH9a qpcqGHsislcqaHjpWDdaGcaaqaaiaacIcacqaH1oqzdaWgaaWcbaGa amOuaaqabaGccqGHRaWkcaWGPbGaeqyTdu2aaSbaaSqaaiaadMeaae qaaOGaaiykaiabeY7aTbWcbeaaaaa@44F4@

Then

E= E 0 e ikz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweacqGH9a qpcaWGfbWaaSbaaSqaaiaaicdaaeqaaOGaamyzamaaCaaaleqabaGa eyOeI0IaamyAaiaadUgacaWG6baaaaaa@3E56@

 

Schrodinger equation with a potential, V, and kinetic energy E:

2 2m 2 ψ(VE)ψ=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaeS 4dHG2aaWbaaSqabeaacaaIYaaaaaGcbaGaaGOmaiaad2gaaaGaey4b Ie9aaWbaaSqabeaacaaIYaaaaOGaeqiYdKNaeyOeI0IaaiikaiaadA facqGHsislcaWGfbGaaiykaiabeI8a5jabg2da9iaaicdaaaa@4672@

The fundamental difference is that the V-E term is usually real for the Schrodinger wave equation for one particle.  If the potential is due to the force fields of many particles, then the potential could be complex because of the response times of these particles to the presence of the particle being analyzed.

 

Discussion of Solutions at a Discontinuity of the Parameters

            In the two differential equations above, let's rename both factors εμw2 =n2k02and 2m(V-E)/h2 =n2k02 to make the two equations look the same:

2 E n 2 k 0 2 E=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgEGirpaaCa aaleqabaGaaGOmaaaakiaadweacqGHsislcaWGUbWaaWbaaSqabeaa caaIYaaaaOGaam4AamaaDaaaleaacaaIWaaabaGaaGOmaaaakiaadw eacqGH9aqpcaaIWaaaaa@4128@

2 ψ n 2 k 0 2 ψ=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgEGirpaaCa aaleqabaGaaGOmaaaakiabeI8a5jabgkHiTiaad6gadaahaaWcbeqa aiaaikdaaaGccaWGRbWaa0baaSqaaiaaicdaaeaacaaIYaaaaOGaeq iYdKNaeyypa0JaaGimaaaa@4330@

We want to use only the differential equations to derive the solutions for E and ψ on both sides of the discontinuity.  Let n=n1 on the left side of the discontinuity  and n=n2 on the right side of the discontinuity and restrict the divergence to just one dimension, x.  Further place the discontinuity at x=0.  From the equations it's clear that the second derivative has a discontinuity at the interface

d 2 ψ d x 2 ) x<0 n 1 2 k 0 2 ψ x<0 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabiaabaWaaS aaaeaacaWGKbWaaWbaaSqabeaacaaIYaaaaOGaeqiYdKhabaGaamiz aiaadIhadaahaaWcbeqaaiaaikdaaaaaaaGccaGLPaaadaWgaaWcba GaamiEaiabgYda8iaaicdaaeqaaOGaeyOeI0IaamOBamaaDaaaleaa caaIXaaabaGaaGOmaaaakiaadUgadaqhaaWcbaGaaGimaaqaaiaaik daaaGccqaHipqEdaWgaaWcbaGaamiEaiabgYda8iaaicdaaeqaaOGa eyypa0JaaGimaaaa@4CE1@

d 2 ψ d x 2 ) x>0 n 2 2 k 0 2 ψ x>0 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabiaabaWaaS aaaeaacaWGKbWaaWbaaSqabeaacaaIYaaaaOGaeqiYdKhabaGaamiz aiaadIhadaahaaWcbeqaaiaaikdaaaaaaaGccaGLPaaadaWgaaWcba GaamiEaiabg6da+iaaicdaaeqaaOGaeyOeI0IaamOBamaaDaaaleaa caaIYaaabaGaaGOmaaaakiaadUgadaqhaaWcbaGaaGimaaqaaiaaik daaaGccqaHipqEdaWgaaWcbaGaamiEaiabg6da+iaaicdaaeqaaOGa eyypa0JaaGimaaaa@4CEA@

Subtracting these 2 equations we get:

d 2 ψ d x 2 ) x>0 d 2 ψ d x 2 ) x<0 = n 2 2 k 0 2 ψ x>0 n 1 2 k 0 2 ψ x<0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabiaabaWaaS aaaeaacaWGKbWaaWbaaSqabeaacaaIYaaaaOGaeqiYdKhabaGaamiz aiaadIhadaahaaWcbeqaaiaaikdaaaaaaaGccaGLPaaadaWgaaWcba GaamiEaiabg6da+iaaicdaaeqaaOGaeyOeI0YaaeGaaeaadaWcaaqa aiaadsgadaahaaWcbeqaaiaaikdaaaGccqaHipqEaeaacaWGKbGaam iEamaaCaaaleqabaGaaGOmaaaaaaaakiaawMcaamaaBaaaleaacaWG 4bGaeyipaWJaaGimaaqabaGccqGH9aqpcaWGUbWaa0baaSqaaiaaik daaeaacaaIYaaaaOGaam4AamaaDaaaleaacaaIWaaabaGaaGOmaaaa kiabeI8a5naaBaaaleaacaWG4bGaeyOpa4JaaGimaaqabaGccqGHsi slcaWGUbWaa0baaSqaaiaaigdaaeaacaaIYaaaaOGaam4AamaaDaaa leaacaaIWaaabaGaaGOmaaaakiabeI8a5naaBaaaleaacaWG4bGaey ipaWJaaGimaaqabaaaaa@615C@

At x=0, the expression on the right hand side of the equation is a simple constant:

d 2 ψ d x 2 ) x>0 d 2 ψ d x 2 ) x<0 =( n 2 2 n 1 2 ) k 0 2 ψ x=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabiaabaWaaS aaaeaacaWGKbWaaWbaaSqabeaacaaIYaaaaOGaeqiYdKhabaGaamiz aiaadIhadaahaaWcbeqaaiaaikdaaaaaaaGccaGLPaaadaWgaaWcba GaamiEaiabg6da+iaaicdaaeqaaOGaeyOeI0YaaeGaaeaadaWcaaqa aiaadsgadaahaaWcbeqaaiaaikdaaaGccqaHipqEaeaacaWGKbGaam iEamaaCaaaleqabaGaaGOmaaaaaaaakiaawMcaamaaBaaaleaacaWG 4bGaeyipaWJaaGimaaqabaGccqGH9aqpcaGGOaGaamOBamaaDaaale aacaaIYaaabaGaaGOmaaaakiabgkHiTiaad6gadaqhaaWcbaGaaGym aaqaaiaaikdaaaGccaGGPaGaam4AamaaDaaaleaacaaIWaaabaGaaG OmaaaakiabeI8a5naaBaaaleaacaWG4bGaeyypa0JaaGimaaqabaaa aa@5B57@

We may integrate this equation over a small range dx to obtain:

d 2 ψ d x 2 ) x>0 dx d 2 ψ d x 2 ) x<0 dx =( n 2 2 n 1 2 ) k 0 2 ψ x=0 dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaapeaabaWaae GaaeaadaWcaaqaaiaadsgadaahaaWcbeqaaiaaikdaaaGccqaHipqE aeaacaWGKbGaamiEamaaCaaaleqabaGaaGOmaaaaaaaakiaawMcaam aaBaaaleaacaWG4bGaeyOpa4JaaGimaaqabaGccaWGKbGaamiEaaWc beqab0Gaey4kIipakiabgkHiTmaapeaabaWaaeGaaeaadaWcaaqaai aadsgadaahaaWcbeqaaiaaikdaaaGccqaHipqEaeaacaWGKbGaamiE amaaCaaaleqabaGaaGOmaaaaaaaakiaawMcaamaaBaaaleaacaWG4b GaeyipaWJaaGimaaqabaGccaWGKbGaamiEaaWcbeqab0Gaey4kIipa kiabg2da9iaacIcacaWGUbWaa0baaSqaaiaaikdaaeaacaaIYaaaaO GaeyOeI0IaamOBamaaDaaaleaacaaIXaaabaGaaGOmaaaakiaacMca caWGRbWaa0baaSqaaiaaicdaaeaacaaIYaaaaOWaa8qaaeaacqaHip qEdaWgaaWcbaGaamiEaiabg2da9iaaicdaaeqaaaqabeqaniabgUIi YdGccaWGKbGaamiEaaaa@670D@

It's well known that the integral of a second derivative is just the first derivative:

dψ dx ) x>0 dψ dx ) x<0 =( n 2 2 n 1 2 ) k 0 2 ψ x=0 dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabiaabaWaaS aaaeaacaWGKbGaeqiYdKhabaGaamizaiaadIhaaaaacaGLPaaadaWg aaWcbaGaamiEaiabg6da+iaaicdaaeqaaOGaeyOeI0YaaeGaaeaada WcaaqaaiaadsgacqaHipqEaeaacaWGKbGaamiEaaaaaiaawMcaamaa BaaaleaacaWG4bGaeyipaWJaaGimaaqabaGccqGH9aqpcaGGOaGaam OBamaaDaaaleaacaaIYaaabaGaaGOmaaaakiabgkHiTiaad6gadaqh aaWcbaGaaGymaaqaaiaaikdaaaGccaGGPaGaam4AamaaDaaaleaaca aIWaaabaGaaGOmaaaakmaapeaabaGaeqiYdK3aaSbaaSqaaiaadIha cqGH9aqpcaaIWaaabeaaaeqabeqdcqGHRiI8aOGaamizaiaadIhaaa a@5B6B@

Since the integral on the right side over a vanishingly small range of x is zero we then have the result that

dψ dx ) x>0 dψ dx ) x<0 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabiaabaWaaS aaaeaacaWGKbGaeqiYdKhabaGaamizaiaadIhaaaaacaGLPaaadaWg aaWcbaGaamiEaiabg6da+iaaicdaaeqaaOGaeyOeI0YaaeGaaeaada WcaaqaaiaadsgacqaHipqEaeaacaWGKbGaamiEaaaaaiaawMcaamaa BaaaleaacaWG4bGaeyipaWJaaGimaaqabaGccqGH9aqpcaaIWaaaaa@4968@

With a totally similar argument we can show that

ψ x>0 ψ x<0 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI8a5naaBa aaleaacaWG4bGaeyOpa4JaaGimaaqabaGccqGHsislcqaHipqEdaWg aaWcbaGaamiEaiabgYda8iaaicdaaeqaaOGaeyypa0JaaGimaaaa@421A@

These are the two boundary conditions that are usually used for computing the values of ψ on both sides of the discontinuity.