Crystal Formation Using Lennard-Jones Potential

Introduction

Before we do the math for crystal formation with many atoms, we should first compute the range of oscillation of two atoms in their mutual attractive/repulsive potential energy wells.  After all that will be approximately the final mode of oscillation of the atoms in the crystal.  We can actually see the two atom oscillation in the animation prior to the crystal formation.  After the crystal is formed, but before all kinetic energy is extracted, we can see the oscillation of the atoms in the multi-atom potential.

Calculation of turnaround points for 2 atoms

 

V=4ε( ( σ r ) 12 ( σ r ) 6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAfacqGH9a qpcaaI0aGaeqyTdu2aaeWaaeaadaqadaqaamaalaaabaGaeq4Wdmha baGaamOCaaaaaiaawIcacaGLPaaadaahaaWcbeqaaiaaigdacaaIYa aaaOGaeyOeI0YaaeWaaeaadaWcaaqaaiabeo8aZbqaaiaadkhaaaaa caGLOaGaayzkaaWaaWbaaSqabeaacaaI2aaaaaGccaGLOaGaayzkaa aaaa@47F2@  

(1.1)

Let

u= ( σ r ) 6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwhacqGH9a qpdaqadaqaamaalaaabaGaeq4WdmhabaGaamOCaaaaaiaawIcacaGL PaaadaahaaWcbeqaaiaaiAdaaaaaaa@3D2B@  

(1.2)

The total energy is E+V where E is the kinetic energy, m v 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam yBaiaadAhadaahaaWcbeqaaiaaikdaaaaakeaacaaIYaaaaaaa@3998@  

The excess energy with respect to the bottom of the V potential well is

(V V min )E=0=4ε( u 2 u )+εE MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcacaWGwb GaeyOeI0IaamOvamaaBaaaleaaciGGTbGaaiyAaiaac6gaaeqaaOGa aiykaiabgkHiTiaacweacqGH9aqpcaaIWaGaeyypa0JaaGinaiabew 7aLnaabmaabaGaamyDamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaa dwhaaiaawIcacaGLPaaacqGHRaWkcqaH1oqzcqGHsislcaWGfbaaaa@4D6D@  

(1.3)

Setting up to solve for u we get:

4ε( u 2 u)+(εE)=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaisdacqaH1o qzcaGGOaGaamyDamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadwha caGGPaGaey4kaSIaaiikaiabew7aLjabgkHiTiaadweacaGGPaGaey ypa0JaaGimaaaa@44D6@  

(1.4)

u= 4ε± 16 ε 2 16(εE) ε 8ε =1± E ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwhacqGH9a qpdaWcaaqaaiaaisdacqaH1oqzcqGHXcqSdaGcaaqaaiaaigdacaaI 2aGaeqyTdu2aaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGymaiaaiA dacaGGOaGaeqyTduMaeyOeI0IaamyraiaacMcaaSqabaGccqaH1oqz aeaacaaI4aGaeqyTdugaaiabg2da9iaaigdacqGHXcqSdaGcaaqaam aalaaabaGaamyraaqaaiabew7aLbaaaSqabaaaaa@5202@  

(1.5)

Obviously

r= u 1 6 σ= σ ( 1± E ε ) 1 6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhacqGH9a qpcaWG1bWaaWbaaSqabeaacqGHsisldaWcaaqaaiaaigdaaeaacaaI 2aaaaaaakiabeo8aZjabg2da9maalaaabaGaeq4WdmhabaWaaeWaae aacaaIXaGaeyySae7aaOaaaeaadaWcaaqaaiaadweaaeaacqaH1oqz aaaaleqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaadaWcaaqaaiaaig daaeaacaaI2aaaaaaaaaaaaa@48BD@  

(1.6)

If we set E= m v 2 2 =ε MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweacqGH9a qpdaWcaaqaaiaad2gacaWG2bWaaWbaaSqabeaacaaIYaaaaaGcbaGa aGOmaaaacqGH9aqpcqaH1oqzaaa@3E15@  and set the initial distance r= 2 1 6 σ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhacqGH9a qpcaaIYaWaaWbaaSqabeaadaWcaaqaaiaaigdaaeaacaaI2aaaaaaa kiabeo8aZbaa@3C2A@  where V is minimum and equal to -ε, then m will have just enough energy to escape the potential well. Since we don't want the atoms to go to infinity we must set the kinetic energy slightly less than ε.

Boundary Potential

            It was found that using hard boundaries with soft atom-atom collisions was not conducive to maintaining finite kinetic energy.  Therefore soft forces for the boundaries were implemented.  If the bounds of the box are at x=0,w and y=0,h then a good choice of soft boundary force distribution is

F x = ε b ( ( σ b x ) 12 ( σ b wx ) 12 ) F y = ε b ( ( σ b y ) 12 ( σ b wy ) 12 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamOram aaBaaaleaacaWG4baabeaakiabg2da9iabew7aLnaaBaaaleaacaWG IbaabeaakmaabmaabaWaaeWaaeaadaWcaaqaaiabeo8aZnaaBaaale aacaWGIbaabeaaaOqaaiaadIhaaaaacaGLOaGaayzkaaWaaWbaaSqa beaacaaIXaGaaGOmaaaakiabgkHiTmaabmaabaWaaSaaaeaacqaHdp WCdaWgaaWcbaGaamOyaaqabaaakeaacaWG3bGaeyOeI0IaamiEaaaa aiaawIcacaGLPaaadaahaaWcbeqaaiaaigdacaaIYaaaaaGccaGLOa GaayzkaaaabaGaamOramaaBaaaleaacaWG5baabeaakiabg2da9iab ew7aLnaaBaaaleaacaWGIbaabeaakmaabmaabaWaaeWaaeaadaWcaa qaaiabeo8aZnaaBaaaleaacaWGIbaabeaaaOqaaiaadMhaaaaacaGL OaGaayzkaaWaaWbaaSqabeaacaaIXaGaaGOmaaaakiabgkHiTmaabm aabaWaaSaaaeaacqaHdpWCdaWgaaWcbaGaamOyaaqabaaakeaacaWG 3bGaeyOeI0IaamyEaaaaaiaawIcacaGLPaaadaahaaWcbeqaaiaaig dacaaIYaaaaaGccaGLOaGaayzkaaaaaaa@66D3@  

(1.7)

where εb and σb are analogous to like-named quantities for the atom-atom potential and Fx and Fy are the force components due to this boundary potential.