Deriving the Equations in Minguzzi's Explicit Time Expression

 

Introduction

            Minguzzi considered what he called the reconstruction problem during acceleration in special relativity.  For 1+1 dimensions this requires that the accelerated observer O have an accelerometer that records his acceleration Vs time along his spatial direction.  His ansatz is that the acceleration, a, can be expressed as

a= d dt γv= d dt ( v 1 v 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggacqGH9a qpdaWcaaqaaiaadsgaaeaacaWGKbGaamiDaaaacqaHZoWzcaWG2bGa eyypa0ZaaSaaaeaacaWGKbaabaGaamizaiaadshaaaWaaeWaaeaada WcaaqaaiaadAhaaeaadaGcaaqaaiaaigdacqGHsislcaWG2bWaaWba aSqabeaacaaIYaaaaaqabaaaaaGccaGLOaGaayzkaaaaaa@476F@  

(1.1)

where v is speed it has been assumed that c=1

Instead of using this equation directly to compute the speed Vs time he reverts to the Lorentz invariant value a2 by taking the square of the time-like component and subtracting the square  of the space-like component and obtains the following result

a 2 = ( d dt (γ) ) 2 ( d dt (γv) ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiaadg gadaahaaWcbeqaaiaaikdaaaGccqGH9aqpdaqadaqaamaalaaabaGa amizaaqaaiaadsgacaWG0baaaiaacIcacqaHZoWzcaGGPaaacaGLOa GaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0YaaeWaaeaadaWc aaqaaiaadsgaaeaacaWGKbGaamiDaaaacaGGOaGaeq4SdCMaamODai aacMcaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaaaa@4C43@  

(1.2)

where γ=1/ 1 v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo7aNjabg2 da9iaaigdacaGGVaWaaOaaaeaacaaIXaGaeyOeI0IaamODamaaCaaa leqabaGaaGOmaaaaaeqaaaaa@3DA3@ .

Taking the differentials we get:

a 2 = 1 ( 1 v 2 ) 2 ( dv dt ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggadaahaa WcbeqaaiaaikdaaaGccqGH9aqpdaWcaaqaaiaaigdaaeaadaqadaqa aiaaigdacqGHsislcaWG2bWaaWbaaSqabeaacaaIYaaaaaGccaGLOa GaayzkaaWaaWbaaSqabeaacaaIYaaaaaaakmaabmaabaWaaSaaaeaa caWGKbGaamODaaqaaiaadsgacaWG0baaaaGaayjkaiaawMcaamaaCa aaleqabaGaaGOmaaaaaaa@45EF@  

(1.3)

which is quite different from the result that we would get using equation  (1.1) which is

a 2 = 1 (1 v 2 ) 3 ( dv dt ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggadaahaa WcbeqaaiaaikdaaaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaGGOaGa aGymaiabgkHiTiaadAhadaahaaWcbeqaaiaaikdaaaGccaGGPaWaaW baaSqabeaacaaIZaaaaaaakmaabmaabaWaaSaaaeaacaWGKbGaamOD aaqaaiaadsgacaWG0baaaaGaayjkaiaawMcaamaaCaaaleqabaGaaG Omaaaaaaa@45C0@  

(1.4)

Solving equation (1.3) for v we obtain:

0 v dv' 1v ' 2 = tanh 1 (v)= 0 t a(t')dt' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaapehabaWaaS aaaeaacaWGKbGaamODaiaacEcaaeaacaaIXaGaeyOeI0IaamODaiaa cEcadaahaaWcbeqaaiaaikdaaaaaaaqaaiaaicdaaeaacaWG2baani abgUIiYdGccqGH9aqpciGG0bGaaiyyaiaac6gacaGGObWaaWbaaSqa beaacqGHsislcaaIXaaaaOGaaiikaiaadAhacaGGPaGaeyypa0Zaa8 qCaeaacaWGHbGaaiikaiaadshacaGGNaGaaiykaiaadsgacaWG0bGa ai4jaaWcbaGaaGimaaqaaiaadshaa0Gaey4kIipaaaa@5566@  

(1.5)

and therefore

v(t)=tanh[ 0 t a(t')dt' + tanh 1 ( v 0 ) ]tanh(θ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAhacaGGOa GaamiDaiaacMcacqGH9aqpciGG0bGaaiyyaiaac6gacaGGObWaamWa aeaadaWdXbqaaiaadggacaGGOaGaamiDaiaacEcacaGGPaGaaiizai aacshacaGGNaaaleaacaaIWaaabaGaamiDaaqdcqGHRiI8aOGaey4k aSIaciiDaiaacggacaGGUbGaaiiAamaaCaaaleqabaGaeyOeI0IaaG ymaaaakiaacIcacaWG2bWaaSbaaSqaaiaaicdaaeqaaOGaaiykaaGa ay5waiaaw2faaiabggMi6kGacshacaGGHbGaaiOBaiaacIgacaGGOa GaeqiUdeNaaiykaaaa@5CD8@  

(1.6)

Then the change in the time like component is just the integral δτ= 0 t cosh[θ(t')]dt' MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjabes 8a0jabg2da9maapehabaGaci4yaiaac+gacaGGZbGaaiiAaiaacUfa cqaH4oqCcaGGOaGaamiDaiaacEcacaGGPaGaaiyxaiaacsgacaGG0b Gaai4jaaWcbaGaaGimaaqaaiaadshaa0Gaey4kIipaaaa@4B35@  and the change in space like component is δx= 0 t sinh[θ(t')]dt' MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaadI hacqGH9aqpdaWdXbqaaiGacohacaGGPbGaaiOBaiaacIgacaGGBbGa eqiUdeNaaiikaiaadshacaGGNaGaaiykaiaac2facaWGKbGaamiDai aacEcaaSqaaiaaicdaaeaacaWG0baaniabgUIiYdaaaa@4A74@ .

In order to avoid problems of simultaneity at a large distance, Minguzzi chooses to compute the invariant T2(t) which is the difference between the squares of δτ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjabes 8a0jaaykW7aaa@3AE1@  and δx MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaadI haaaa@388E@  or

T 2 =δ τ 2 δ x 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaahaa WcbeqaaiaaikdaaaGccqGH9aqpcqaH0oazcqaHepaDdaahaaWcbeqa aiaaikdaaaGccqGHsislcqaH0oazcaWG4bWaaWbaaSqabeaacaaIYa aaaaaa@4193@  

(1.7)

This expression turns out to be very simple since δ τ 2 δ x 2 =(δτδx)(δτ+δx) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjabes 8a0naaCaaaleqabaGaaGOmaaaakiabgkHiTiabes7aKjaadIhadaah aaWcbeqaaiaaikdaaaGccqGH9aqpcaGGOaGaeqiTdqMaeqiXdqNaey OeI0IaeqiTdqMaamiEaiaacMcacaGGOaGaeqiTdqMaeqiXdqNaey4k aSIaeqiTdqMaamiEaiaacMcaaaa@506A@  and we may form the components of this product inside the integrals:

δτδx= 0 t {cosh[θ(t')]sinh[θ(t')]}dt'= 0 t exp[θ(t')]dt' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjabes 8a0jabgkHiTiabes7aKjaadIhacqGH9aqpdaWdXbqaaiaacUhaciGG JbGaai4BaiaacohacaGGObGaai4waiabeI7aXjaacIcacaWG0bGaai 4jaiaacMcacaGGDbGaeyOeI0Iaai4CaiaacMgacaGGUbGaaiiAaiaa cUfacqaH4oqCcaGGOaGaamiDaiaacEcacaGGPaGaaiyxaiaac2haca GGKbGaamiDaiaacEcacqGH9aqpaSqaaiaaicdaaeaacaWG0baaniab gUIiYdGcdaWdXbqaaiGacwgacaGG4bGaaiiCaiaacUfacqGHsislcq aH4oqCcaGGOaGaamiDaiaacEcacaGGPaGaaiyxaiaacsgacaWG0bGa ai4jaaWcbaGaaGimaaqaaiaadshaa0Gaey4kIipaaaa@6DD9@  

(1.8)

δτ+δx= 0 t {cosh[θ(t')]+sinh[θ(t')]}dt'= 0 t exp[θ(t')]dt' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjabes 8a0jabgUcaRiabes7aKjaadIhacqGH9aqpdaWdXbqaaiaacUhaciGG JbGaai4BaiaacohacaGGObGaai4waiabeI7aXjaacIcacaWG0bGaai 4jaiaacMcacaGGDbGaey4kaSIaai4CaiaacMgacaGGUbGaaiiAaiaa cUfacqaH4oqCcaGGOaGaamiDaiaacEcacaGGPaGaaiyxaiaac2haca GGKbGaamiDaiaacEcacqGH9aqpaSqaaiaaicdaaeaacaWG0baaniab gUIiYdGcdaWdXbqaaiGacwgacaGG4bGaaiiCaiaacUfacqaH4oqCca GGOaGaamiDaiaacEcacaGGPaGaaiyxaiaacsgacaWG0bGaai4jaaWc baGaaGimaaqaaiaadshaa0Gaey4kIipaaaa@6CD6@  

(1.9)

and therefore

T 2 = 0 t exp[θ(t')]dt' 0 t exp[θ(t')]dt' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaahaa WcbeqaaiaaikdaaaGccqGH9aqpdaWdXbqaaiGacwgacaGG4bGaaiiC aiaacUfacqaH4oqCcaGGOaGaamiDaiaacEcacaGGPaGaaiyxaiaads gacaWG0bGaai4jaaWcbaGaaGimaaqaaiaadshaa0Gaey4kIipakmaa pehabaGaciyzaiaacIhacaGGWbGaai4waiabgkHiTiabeI7aXjaacI cacaWG0bGaai4jaiaacMcacaGGDbGaamizaiaadshacaGGNaaaleaa caaIWaaabaGaamiDaaqdcqGHRiI8aaaa@59A2@  

(1.10)

 

Differential Aging Ratio

            We would like to derive an expression for dT/dt from our expression for T2

2T dT dt = d dt { 0 t exp[θ(t')]dt' 0 t exp[θ(t')] dt' } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaikdacaWGub WaaSaaaeaacaWGKbGaamivaaqaaiaadsgacaWG0baaaiabg2da9maa laaabaGaamizaaqaaiaadsgacaWG0baaamaacmaabaWaa8qCaeaaci GGLbGaaiiEaiaacchacaGGBbGaeqiUdeNaaiikaiaadshacaGGNaGa aiykaiaac2facaGGKbGaaiiDaiaacEcaaSqaaiaaicdaaeaacaWG0b aaniabgUIiYdGcdaWdXbqaaiGacwgacaGG4bGaaiiCaiaacUfacqGH sislcqaH4oqCcaGGOaGaamiDaiaacEcacaGGPaGaaiyxaaWcbaGaaG imaaqaaiaadshaa0Gaey4kIipakiaadsgacaWG0bGaai4jaaGaay5E aiaaw2haaaaa@6233@  

(1.11)

dT dt = 1 2T d dt { 0 t exp[θ(t')] dt' 0 t exp[θ(t')] dt' }= 1 2T { exp[θ(t)] 0 t exp[θ(t')]dt' +exp[θ(t)] 0 t exp[θ(t')]dt' } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaWaaSaaae aacaWGKbGaamivaaqaaiaadsgacaWG0baaaiabg2da9maalaaabaGa aGymaaqaaiaaikdacaWGubaaamaalaaabaGaamizaaqaaiaadsgaca WG0baaamaacmaabaWaa8qCaeaaciGGLbGaaiiEaiaacchacaGGBbGa eqiUdeNaaiikaiaadshacaGGNaGaaiykaiaac2faaSqaaiaaicdaae aacaWG0baaniabgUIiYdGccaWGKbGaamiDaiaacEcadaWdXbqaaiGa cwgacaGG4bGaaiiCaiaacUfacqGHsislcqaH4oqCcaGGOaGaamiDai aacEcacaGGPaGaaiyxaaWcbaGaaGimaaqaaiaadshaa0Gaey4kIipa kiaadsgacaWG0bGaai4jaaGaay5Eaiaaw2haaiabg2da9aqaamaala aabaGaaGymaaqaaiaaikdacaWGubaaamaacmaabaGaciyzaiaacIha caGGWbGaai4waiabeI7aXjaacIcacaWG0bGaaiykaiaac2fadaWdXb qaaiGacwgacaGG4bGaaiiCaiaacUfacqGHsislcqaH4oqCcaGGOaGa amiDaiaacEcacaGGPaGaaiyxaiaacsgacaGG0bGaai4jaaWcbaGaaG imaaqaaiaadshaa0Gaey4kIipakiabgUcaRiGacwgacaGG4bGaaiiC aiaacUfacqGHsislcqaH4oqCcaGGOaGaamiDaiaacMcacaGGDbWaa8 qCaeaaciGGLbGaaiiEaiaacchacaGGBbGaeqiUdeNaaiikaiaadsha caGGNaGaaiykaiaac2facaGGKbGaaiiDaiaacEcaaSqaaiaaicdaae aacaWG0baaniabgUIiYdaakiaawUhacaGL9baaaaaa@9C9E@  

(1.12)

dT dt = 1 2 { exp[θ(t)] 0 t exp[θ(t')]dt' +exp[θ(t)] 0 t exp[θ(t')]dt' } ( 0 t exp[θ(t')]dt' )( 0 t exp[θ(t')]dt' ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaWaaSaaae aacaWGKbGaamivaaqaaiaadsgacaWG0baaaiabg2da9aqaamaalaaa baGaaGymaaqaaiaaikdaaaWaaSaaaeaadaGadaqaaiGacwgacaGG4b GaaiiCaiaacUfacqaH4oqCcaGGOaGaamiDaiaacMcacaGGDbWaa8qC aeaaciGGLbGaaiiEaiaacchacaGGBbGaeyOeI0IaeqiUdeNaaiikai aadshacaGGNaGaaiykaiaac2facaGGKbGaaiiDaiaacEcaaSqaaiaa icdaaeaacaWG0baaniabgUIiYdGccqGHRaWkciGGLbGaaiiEaiaacc hacaGGBbGaeyOeI0IaeqiUdeNaaiikaiaadshacaGGPaGaaiyxamaa pehabaGaciyzaiaacIhacaGGWbGaai4waiabeI7aXjaacIcacaWG0b Gaai4jaiaacMcacaGGDbGaaiizaiaacshacaGGNaaaleaacaaIWaaa baGaamiDaaqdcqGHRiI8aaGccaGL7bGaayzFaaaabaWaaOaaaeaada qadaqaamaapehabaGaciyzaiaacIhacaGGWbGaai4waiabgkHiTiab eI7aXjaacIcacaWG0bGaai4jaiaacMcacaGGDbGaaiizaiaacshaca GGNaaaleaacaaIWaaabaGaamiDaaqdcqGHRiI8aaGccaGLOaGaayzk aaWaaeWaaeaadaWdXbqaaiGacwgacaGG4bGaaiiCaiaacUfacqaH4o qCcaGGOaGaamiDaiaacEcacaGGPaGaaiyxaiaacsgacaGG0bGaai4j aaWcbaGaaGimaaqaaiaadshaa0Gaey4kIipaaOGaayjkaiaawMcaaa Wcbeaaaaaaaaa@968C@  

(1.13)

 

dT dt = 1 2 { exp[θ(t)] 0 t exp[θ(t')]dt' 0 t exp[θ(t')]dt' +exp[θ(t)] 0 t exp[θ(t')]dt' 0 t exp[θ(t')]dt' } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiaadsfaaeaacaWGKbGaamiDaaaacqGH9aqpdaWcaaqaaiaaigda aeaacaaIYaaaamaacmaabaGaciyzaiaacIhacaGGWbGaai4waiabeI 7aXjaacIcacaWG0bGaaiykaiaac2fadaGcaaqaamaalaaabaWaa8qC aeaaciGGLbGaaiiEaiaacchacaGGBbGaeyOeI0IaeqiUdeNaaiikai aadshacaGGNaGaaiykaiaac2facaGGKbGaaiiDaiaacEcaaSqaaiaa icdaaeaacaWG0baaniabgUIiYdaakeaadaWdXbqaaiGacwgacaGG4b GaaiiCaiaacUfacqaH4oqCcaGGOaGaamiDaiaacEcacaGGPaGaaiyx aiaacsgacaGG0bGaai4jaaWcbaGaaGimaaqaaiaadshaa0Gaey4kIi paaaaaleqaaOGaey4kaSIaciyzaiaacIhacaGGWbGaai4waiabgkHi TiabeI7aXjaacIcacaWG0bGaaiykaiaac2fadaGcaaqaamaalaaaba Waa8qCaeaaciGGLbGaaiiEaiaacchacaGGBbGaeqiUdeNaaiikaiaa dshacaGGNaGaaiykaiaac2facaGGKbGaaiiDaiaacEcaaSqaaiaaic daaeaacaWG0baaniabgUIiYdaakeaadaWdXbqaaiGacwgacaGG4bGa aiiCaiaacUfacqGHsislcqaH4oqCcaGGOaGaamiDaiaacEcacaGGPa GaaiyxaiaacsgacaGG0bGaai4jaaWcbaGaaGimaaqaaiaadshaa0Ga ey4kIipaaaaaleqaaaGccaGL7bGaayzFaaaaaa@939E@  

(1.14)

To simplify this expression let

b= 0 t exp[θ(t')]dt' 0 t exp[θ(t')]dt' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkgacqGH9a qpdaGcaaqaamaalaaabaWaa8qCaeaaciGGLbGaaiiEaiaacchacaGG BbGaeyOeI0IaeqiUdeNaaiikaiaadshacaGGNaGaaiykaiaac2faca GGKbGaaiiDaiaacEcaaSqaaiaaicdaaeaacaWG0baaniabgUIiYdaa keaadaWdXbqaaiGacwgacaGG4bGaaiiCaiaacUfacqaH4oqCcaGGOa GaamiDaiaacEcacaGGPaGaaiyxaiaacsgacaGG0bGaai4jaaWcbaGa aGimaaqaaiaadshaa0Gaey4kIipaaaaaleqaaaaa@58E4@  

(1.15)

and note that b=exp[ln(b)] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkgacqGH9a qpciGGLbGaaiiEaiaacchacaGGBbGaciiBaiaac6gacaGGOaGaaiOy aiaacMcacaGGDbaaaa@4097@  Then equation (1.14) can be expressed as

 

dT dt = 1 2 {bexp[θ(t)]+exp[θ(t)]/b]}= 1 2 {exp[θ(t)]exp[ln(b)]+exp[θ(t)]exp[ln(b)]}= 1 2 {exp[θ(t)+ln(b)]+exp[θ(t)ln(b)]} =cosh[θ(t)+ln(b)] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaWaaSaaae aacaWGKbGaamivaaqaaiaadsgacaWG0baaaiabg2da9maalaaabaGa aGymaaqaaiaaikdaaaGaai4EaiaackgaciGGLbGaaiiEaiaacchaca GGBbGaeqiUdeNaaiikaiaadshacaGGPaGaaiyxaiabgUcaRiGacwga caGG4bGaaiiCaiaacUfacqGHsislcqaH4oqCcaGGOaGaamiDaiaacM cacaGGDbGaai4laiaackgacaGGDbGaaiyFaiabg2da9aqaamaalaaa baGaaGymaaqaaiaaikdaaaGaai4EaiGacwgacaGG4bGaaiiCaiaacU facqaH4oqCcaGGOaGaamiDaiaacMcacaGGDbGaaiyzaiaacIhacaGG WbGaai4waiaacYgacaGGUbGaaiikaiaackgacaGGPaGaaiyxaiabgU caRiGacwgacaGG4bGaaiiCaiaacUfacqGHsislcqaH4oqCcaGGOaGa amiDaiaacMcacaGGDbGaaiyzaiaacIhacaGGWbGaai4waiabgkHiTi aacYgacaGGUbGaaiikaiaackgacaGGPaGaaiyxaiaac2hacqGH9aqp aeaadaWcaaqaaiaaigdaaeaacaaIYaaaaiaacUhaciGGLbGaaiiEai aacchacaGGBbGaeqiUdeNaaiikaiaadshacaGGPaGaey4kaSIaaiiB aiaac6gacaGGOaGaaiOyaiaacMcacaGGDbGaey4kaSIaciyzaiaacI hacaGGWbGaai4waiabgkHiTiabeI7aXjaacIcacaWG0bGaaiykaiab gkHiTiaacYgacaGGUbGaaiikaiaackgacaGGPaGaaiyxaiaac2haae aacqGH9aqpcaGGJbGaai4BaiaacohacaGGObGaai4waiabeI7aXjaa cIcacaGG0bGaaiykaiabgUcaRiaacYgacaGGUbGaaiikaiaackgaca GGPaGaaiyxaaaaaa@AFED@  

(1.16)

Rewriting equation (1.16) with its full expressions for θ and b we have:

dT/dt=cosh[ 0 t a(t')dt'+ 1 2 ln( 0 t exp[ 0 t' a(t'')dt'']dt' 0 t exp[ 0 t' a(t'')dt'']dt' ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgacaWGub Gaai4laiaacsgacaGG0bGaeyypa0Jaai4yaiaac+gacaGGZbGaaiiA amaadmaabaWaa8qCaeaacaWGHbGaaiikaiaadshacaGGNaGaaiykai aadsgacaWG0bGaai4jaiabgUcaRmaalaaabaGaaGymaaqaaiaaikda aaGaciiBaiaac6gadaqadaqaamaalaaabaWaa8qCaeaaciGGLbGaai iEaiaacchacaGGBbGaeyOeI0Yaa8qCaeaacaWGHbGaaiikaiaadsha caGGNaGaai4jaiaacMcacaWGKbGaamiDaiaacEcacaGGNaGaaiyxai aadsgacaWG0bGaai4jaaWcbaGaaGimaaqaaiaadshacaGGNaaaniab gUIiYdaaleaacaaIWaaabaGaamiDaaqdcqGHRiI8aaGcbaWaa8qCae aaciGGLbGaaiiEaiaacchacaGGBbWaa8qCaeaacaWGHbGaaiikaiaa dshacaGGNaGaai4jaiaacMcacaWGKbGaamiDaiaacEcacaGGNaGaai yxaiaadsgacaWG0bGaai4jaaWcbaGaaGimaaqaaiaadshacaGGNaaa niabgUIiYdaaleaacaaIWaaabaGaamiDaaqdcqGHRiI8aaaaaOGaay jkaiaawMcaaaWcbaGaaGimaaqaaiaadshaa0Gaey4kIipaaOGaay5w aiaaw2faaaaa@8214@  

(1.17)

T is an invariant so it is important to know what this invariant means.  It just means that parties in any inertial reference system that happens to be spatially alongside of the one that is being accelerated will find the same time between the acceleration starting event and any subsequent event.