Diffusion of Two Gases

Introduction

            This will analyze the diffusion of two samples of  gases where one gas is initially on the left side of the container and the other is on the right side of the container.

Analysis:

Case 1: Simplest case of heat flow into slab:

            The gas diffusion problem is fairly complex so, as a warm-up, I will start by

Figure 2: Slab whose temperature functions are analyzed below.

analyzing the flow of heat into a large, thin slab of thickness L (see Figure 2). 

            The solid state analog of the atoms that we will discuss later are called phonons which are quantum mechanical entities that represent vibrations of the atomic nuclei in the solid.   These phonon density is higher in the hotter regions of the solid and they carry the heat from the hotter parts of the solids to the cooler parts in the same way that one atomic species migrates from a region where its density is high to a region where its density is low.  The phonons collide with other phonons which retards their progress in the same way that the atoms of a gas collide with other atoms retarding their progress toward lower density. 

 

            For the present heat flow problem, the power input into the left side of the slab will be Q (watts-m-2).  The conductivity will be K (watt m-1 K-1) and the heat capacity will be C (Joules m-3 K-1).  Further I will assume, as shown, that the slab is insulated on the sides not in contact with the heat source.  Then we can immediately write that, after transients have died out, the temperature everywhere in the slab rises as

T t = Q CL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIyRaamivaaqaaiabgkGi2kaadshaaaGaeyypa0ZaaSaaaeaacaWG rbaabaGaam4qaiaadYeaaaaaaa@3E1E@                                                                                              (1)

The partial differential equation for heat flow is:

K C 2 T x 2 = T t = Q CL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam 4saaqaaiaadoeaaaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikda aaGccaWGubaabaGaeyOaIyRaamiEamaaCaaaleqabaGaaGOmaaaaaa GccqGH9aqpdaWcaaqaaiabgkGi2kaadsfaaeaacqGHciITcaWG0baa aiabg2da9maalaaabaGaamyuaaqaaiaadoeacaWGmbaaaaaa@4764@                                                                              (2)

where the latter equality applies only to steady state.  Integrating equation 2 with respect to x once we obtain:

T x = Q KL x+A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIyRaamivaaqaaiabgkGi2kaadIhaaaGaeyypa0ZaaSaaaeaacaWG rbaabaGaam4saiaadYeaaaGaamiEaiabgUcaRiaadgeaaaa@40CF@                                                                                                 (3)

where A is a constant that will be determined later by boundary conditions.

Integrating equation 3 with respect to x results in:

T= Q KL x 2 2 +Ax+B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfacqGH9a qpdaWcaaqaaiaadgfaaeaacaWGlbGaamitaaaadaWcaaqaaiaadIha daahaaWcbeqaaiaaikdaaaaakeaacaaIYaaaaiabgUcaRiaadgeaca WG4bGaey4kaSIaamOqaaaa@415B@                                                                            (4)

where B is another constant that we must determine.  Note that, since the boundary at x=L is insulated there is no heat flow there so 

T x ) x=L =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabiaabaWaaS aaaeaacqGHciITcaWGubaabaGaeyOaIyRaamiEaaaaaiaawMcaamaa BaaaleaacaWG4bGaeyypa0JaamitaaqabaGccqGH9aqpcaaIWaaaaa@402F@                                                                                           (5)

Using equation 5 in equation 3 we get for A:

A= Q 2K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgeacqGH9a qpcqGHsisldaWcaaqaaiaadgfaaeaacaaIYaGaam4saaaaaaa@3B16@                                                                                             (6)

Finally we can set B in equation 4 to the initial temperature, T0, and obtain

T(x,t) ) SteadyState = Q KL ( x 2 2 xL 2 )+ Q C t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabiaabaGaam ivaiaacIcacaWG4bGaaiilaiaadshacaGGPaaacaGLPaaadaWgaaWc baGaam4uaiaadshacaWGLbGaamyyaiaadsgacaWG5bGaaGPaVlaado facaWG0bGaamyyaiaadshacaWGLbaabeaakiabg2da9maalaaabaGa amyuaaqaaiaadUeacaWGmbaaamaabmaabaWaaSaaaeaacaWG4bWaaW baaSqabeaacaaIYaaaaaGcbaGaaGOmaaaacqGHsisldaWcaaqaaiaa dIhacaWGmbaabaGaaGOmaaaaaiaawIcacaGLPaaacqGHRaWkdaWcaa qaaiaadgfaaeaacaWGdbaaaiaadshaaaa@5650@                                                             (7)

 

            Equation 7 needs a complementary solution to specify the transients that occur when Q is turned on.  For that we use a technique call "separation of variables" which I will explain next.  We have the equation:

K C 2 T x 2 = T t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam 4saaqaaiaadoeaaaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikda aaGccaWGubaabaGaeyOaIyRaamiEamaaCaaaleqabaGaaGOmaaaaaa GccqGH9aqpdaWcaaqaaiabgkGi2kaadsfaaeaacqGHciITcaWG0baa aaaa@43DF@                                                                                        (8)

We make the assumption that T can be written:

T=X(x)Τ(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfacqGH9a qpcaWGybGaaiikaiaadIhacaGGPaGaeuiPdqLaaiikaiaadshacaGG Paaaaa@3ED5@

Then equation 8 can be rewritten:

d 2 X d x 2 =ΛX dΤ dt =ΛDΤ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaWaaSaaae aacaWGKbWaaWbaaSqabeaacaaIYaaaaOGaamiwaaqaaiaadsgacaWG 4bWaaWbaaSqabeaacaaIYaaaaaaakiabg2da9iabgkHiTiabfU5amj aadIfaaeaadaWcaaqaaiaadsgacqqHKoavaeaacaWGKbGaamiDaaaa cqGH9aqpcqGHsislcqqHBoatcaWGebGaeuiPdqfaaaa@49F1@                                                                                        (9a,b)

where Λ is a constant that will depend on initial boundary conditions and I have used the symbol D=K/C, which is the diffusivity.

The obvious solution set for equation 9a is

X=Ecos( Λ x)+Fsin( Λ x) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGH9a qpcaWGfbGaci4yaiaac+gacaGGZbGaaiikamaakaaabaGaeu4MdWea leqaaOGaamiEaiaacMcacqGHRaWkcaWGgbGaci4CaiaacMgacaGGUb GaaiikamaakaaabaGaeu4MdWealeqaaOGaamiEaiaacMcaaaa@47D0@                                                            (10a)

and the solution for equation 9b is

T=exp(ΛDt) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfacqGH9a qpciGGLbGaaiiEaiaacchacaGGOaGaeyOeI0Iaeu4MdWKaamiraiaa dshacaGGPaaaaa@4022@                                                                                     (10b)

If we are going to match boundary conditions in the interval x=(0,L) then the value of Λ has to be

Λ = nπ 2L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaakaaabaGaeu 4MdWealeqaaOGaeyypa0ZaaSaaaeaacaWGUbGaeqiWdahabaGaaGOm aiaadYeaaaaaaa@3CD8@

where n is an integer.  Then equations 10a and 10b become:

X=Ecos( nπ 2L x )+Fsin( nπ 2L x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGH9a qpcaWGfbGaci4yaiaac+gacaGGZbWaaeWaaeaadaWcaaqaaiaad6ga cqaHapaCaeaacaaIYaGaamitaaaacaWG4baacaGLOaGaayzkaaGaey 4kaSIaamOraiGacohacaGGPbGaaiOBamaabmaabaWaaSaaaeaacaWG UbGaeqiWdahabaGaaGOmaiaadYeaaaGaamiEaaGaayjkaiaawMcaaa aa@4D96@                                                         (10a)

Τ=exp( ( nπ 2L ) 2 Dt ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs6aujabg2 da9iGacwgacaGG4bGaaiiCamaabmaabaGaeyOeI0YaaeWaaeaadaWc aaqaaiaad6gacqaHapaCaeaacaaIYaGaamitaaaaaiaawIcacaGLPa aadaahaaWcbeqaaiaaikdaaaGccaWGebGaamiDaaGaayjkaiaawMca aaaa@4653@                                                              (10b)

Finally we apply the conditions

dT dx ) x=0 = Q K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabiaabaWaaS aaaeaacaWGKbGaamivaaqaaiaadsgacaWG4baaaaGaayzkaaWaaSba aSqaaiaadIhacqGH9aqpcaaIWaaabeaakiabg2da9iabgkHiTmaala aabaGaamyuaaqaaiaadUeaaaaaaa@4107@  

dT dx ) x=L =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabiaabaWaaS aaaeaacaWGKbGaamivaaqaaiaadsgacaWG4baaaaGaayzkaaWaaSba aSqaaiaadIhacqGH9aqpcaWGmbaabeaakiabg2da9iaaicdaaaa@3F35@

which implies that

( Esin( nπ 2L L )+Fcos( nπ 2L L ) )( nπ 2L )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaey OeI0IaamyraiGacohacaGGPbGaaiOBamaabmaabaWaaSaaaeaacaWG UbGaeqiWdahabaGaaGOmaiaadYeaaaGaamitaaGaayjkaiaawMcaai abgUcaRiaadAeaciGGJbGaai4BaiaacohadaqadaqaamaalaaabaGa amOBaiabec8aWbqaaiaaikdacaWGmbaaaiaadYeaaiaawIcacaGLPa aaaiaawIcacaGLPaaadaqadaqaamaalaaabaGaamOBaiabec8aWbqa aiaaikdacaWGmbaaaaGaayjkaiaawMcaaiabg2da9iaaicdaaaa@5567@

( Esin( nπ 2L 0 )+Fcos( nπ 2L 0 ) )( nπ 2L )= Q K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaey OeI0IaamyraiGacohacaGGPbGaaiOBamaabmaabaWaaSaaaeaacaWG UbGaeqiWdahabaGaaGOmaiaadYeaaaGaaGimaaGaayjkaiaawMcaai abgUcaRiaadAeaciGGJbGaai4BaiaacohadaqadaqaamaalaaabaGa amOBaiabec8aWbqaaiaaikdacaWGmbaaaiaaicdaaiaawIcacaGLPa aaaiaawIcacaGLPaaadaqadaqaamaalaaabaGaamOBaiabec8aWbqa aiaaikdacaWGmbaaaaGaayjkaiaawMcaaiabg2da9maalaaabaGaam yuaaqaaiaadUeaaaaaaa@5635@

 

so that

F= Q K ( 2L nπ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeacqGH9a qpcqGHsisldaWcaaqaaiaadgfaaeaacaWGlbaaamaabmaabaWaaSaa aeaacaaIYaGaamitaaqaaiaad6gacqaHapaCaaaacaGLOaGaayzkaa aaaa@4035@

and n is odd.  Then the combined transient solution is

T transient (x,t)= QL 2K Q K 2L π mn=0 1 2m+1 sin( (2m+1)π 2L x )exp( ( (2m+1)π 2L ) 2 Dt ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaamiDaiaadkhacaWGHbGaamOBaiaadohacaWGPbGaamyzaiaa d6gacaWG0baabeaakiaacIcacaWG4bGaaiilaiaadshacaGGPaGaey ypa0ZaaSaaaeaacaWGrbGaamitaaqaaiaaikdacaWGlbaaaiabgkHi TmaalaaabaGaamyuaaqaaiaadUeaaaWaaSaaaeaacaaIYaGaamitaa qaaiabec8aWbaadaaeWbqaamaalaaabaGaaGymaaqaaiaaikdacaWG TbGaey4kaSIaaGymaaaaciGGZbGaaiyAaiaac6gadaqadaqaamaala aabaGaaiikaiaaikdacaWGTbGaey4kaSIaaGymaiaacMcacqaHapaC aeaacaaIYaGaamitaaaacaWG4baacaGLOaGaayzkaaGaciyzaiaacI hacaGGWbWaaeWaaeaacqGHsisldaqadaqaamaalaaabaGaaiikaiaa ikdacaWGTbGaey4kaSIaaGymaiaacMcacqaHapaCaeaacaaIYaGaam itaaaaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccaWGebGa amiDaaGaayjkaiaawMcaaaWcbaGaamyBaiaad6gacqGH9aqpcaaIWa aabaGaeyOhIukaniabggHiLdaaaa@781B@                   (11)

where we note that

(1) m 1 2m+1 = π 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaqahabaGaai ikaiabgkHiTiaaigdacaGGPaWaaWbaaSqabeaacaWGTbaaaOWaaSaa aeaacaaIXaaabaGaaGOmaiaad2gacqGHRaWkcaaIXaaaaiabg2da9m aalaaabaGaeqiWdahabaGaaGinaaaaaSqaaaqaaaqdcqGHris5aaaa @43FE@

so that T(x,t)=0 at x=L.

 

Case 2: Diffusion of Gases

Figure 2. Showing the initial conditions.  For this picture there are 500 randomly placed Red atoms on the left and 500 randomly placed blue atoms on the right.  They have random velocities in the plane of the Figure.

 

The equation for the density, n, of atoms is exactly similar to that for temperature discussed above:

D 2 n(x,t) x 2 = n t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadseadaWcaa qaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiaad6gacaGGOaGaamiE aiaacYcacaWG0bGaaiykaaqaaiabgkGi2kaadIhadaahaaWcbeqaai aaikdaaaaaaOGaeyypa0ZaaSaaaeaacqGHciITcaWGUbaabaGaeyOa IyRaamiDaaaaaaa@4733@                                                                                  (12)

I will not derive the required solution for n(x,t).  It is

n(x,t)= n 0 2 [ erfc( x 2 Dt ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gacaGGOa GaamiEaiaacYcacaWG0bGaaiykaiabg2da9maalaaabaGaamOBamaa BaaaleaacaaIWaaabeaaaOqaaiaaikdaaaWaamWaaeaacaWGLbGaam OCaiaadAgacaWGJbWaaeWaaeaadaWcaaqaaiaadIhaaeaacaaIYaWa aOaaaeaacaWGebGaamiDaaWcbeaaaaaakiaawIcacaGLPaaaaiaawU facaGLDbaaaaa@4971@                                                                   (13)

where

erfc(u)=1 2 π 0 u exp( v 2 )dv MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwgacaWGYb GaamOzaiaadogacaGGOaGaamyDaiaacMcacqGH9aqpcaaIXaGaeyOe I0YaaSaaaeaacaaIYaaabaWaaOaaaeaacqaHapaCaSqabaaaaOWaa8 qmaeaaciGGLbGaaiiEaiaacchacaGGOaGaeyOeI0IaamODamaaCaaa leqabaGaaGOmaaaakiaacMcacaWGKbGaamODaaWcbaGaaGimaaqaai aadwhaa0Gaey4kIipaaaa@4E1E@

where D is the diffusivity and n0 is the starting density atoms on each side of the mid-line of the container.  The function erfc is defined as

erfc(u)=1 2 π 0 u exp( v 2 )dv MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwgacaWGYb GaamOzaiaadogacaGGOaGaamyDaiaacMcacqGH9aqpcaaIXaGaeyOe I0YaaSaaaeaacaaIYaaabaWaaOaaaeaacqaHapaCaSqabaaaaOWaa8 qmaeaaciGGLbGaaiiEaiaacchacaGGOaGaeyOeI0IaamODamaaCaaa leqabaGaaGOmaaaakiaacMcacaWGKbGaamODaaWcbaGaaGimaaqaai aadwhaa0Gaey4kIipaaaa@4E1E@

 

 

I will now differentiate both sides of equation 12 to confirm that equation 13 is indeed a solution of equation 12.

 

n t =D 2 n x 2 = n 0 4 x t exp( x 2 4Dt ) πDt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIyRaamOBaaqaaiabgkGi2kaadshaaaGaeyypa0Jaamiramaalaaa baGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaamOBaaqaaiabgkGi2k aadIhadaahaaWcbeqaaiaaikdaaaaaaOGaeyypa0ZaaSaaaeaacaWG UbWaaSbaaSqaaiaaicdaaeqaaaGcbaGaaGinaaaadaWcaaqaaiaadI haaeaacaWG0baaamaalaaabaGaciyzaiaacIhacaGGWbWaaeWaaeaa cqGHsisldaWcaaqaaiaadIhadaahaaWcbeqaaiaaikdaaaaakeaaca aI0aGaamiraiaadshaaaaacaGLOaGaayzkaaaabaWaaOaaaeaacqaH apaCcaWGebGaamiDaaWcbeaaaaaaaa@566C@

 

            The diffusivity, D, here deserves to be better explained.  It depends on the average speed <vx> of the atoms in the horizontal direction as well as the mean free path, lmfp, between collisions.  The latter depends here on the 2 dimensional density of atoms, n2, which equals

n 2 = N hw MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gadaWgaa WcbaGaaGOmaaqabaGccqGH9aqpdaWcaaqaaiaad6eaaeaacaWGObGa am4Daaaaaaa@3BA2@

where N is the total number of atoms, h is the height of the container, and w is its width.  The equation to determine lmfp also depends on the 2 dimensional analog of the collision cross section, σ2.  For 2 dimensions:

σ 2 = r R + r B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo8aZnaaBa aaleaacaaIYaaabeaakiabg2da9iaadkhadaWgaaWcbaGaamOuaaqa baGccqGHRaWkcaWGYbWaaSbaaSqaaiaadkeaaeqaaaaa@3E76@

where rR is the radius of the red atoms and rB is the radius of the blue atom.

 Then the equation for the mean free path is:

n 2 σ 2 l mfp =1or l mfp = 1 n 2 σ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamOBam aaBaaaleaacaaIYaaabeaakiabeo8aZnaaBaaaleaacaaIYaaabeaa kiaadYgadaWgaaWcbaGaamyBaiaadAgacaWGWbaabeaakiabg2da9i aaigdacaaMc8UaaGPaVlaad+gacaWGYbaabaGaamiBamaaBaaaleaa caWGTbGaamOzaiaadchaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaaba GaamOBamaaBaaaleaacaaIYaaabeaakiabeo8aZnaaBaaaleaacaaI Yaaabeaaaaaaaaa@4FA1@  

The equation to obtain D from these quantities is:

D= 1 2 < v x > l mfp MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadseacqGH9a qpdaWcaaqaaiaaigdaaeaacaaIYaaaaiabgYda8iaadAhadaWgaaWc baGaamiEaaqabaGccqGH+aGpcaWGSbWaaSbaaSqaaiaad2gacaWGMb GaamiCaaqabaaaaa@416A@

Effect of Different Atomic Mass

            So far we have been assuming that the masses of the red and blue atoms are the same so that, upon collision, speed changes of both types of atoms are the same.  Suppose now that the masses, M, of the atoms (since we are just working in two dimensions and therefore the atoms are really discs of the same thickness) is proportional to their radii squared:

M Red M Blue = ( r R r B ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam ytamaaBaaaleaaciGGsbGaaiyzaiaadsgaaeqaaaGcbaGaamytamaa BaaaleaacaWGcbGaamiBaiaadwhacaWGLbaabeaaaaGccqGH9aqpda qadaqaamaalaaabaGaamOCamaaBaaaleaacaWGsbaabeaaaOqaaiaa dkhadaWgaaWcbaGaamOqaaqabaaaaaGccaGLOaGaayzkaaWaaWbaaS qabeaacaaIYaaaaaaa@45D1@  

Similarly we expect the average speeds, since the atomic speeds are generated by temperature, to be in the ratio:

< v Red > < V Blue > = M Blue M Red = r B r R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey ipaWJaamODamaaBaaaleaaciGGsbGaaiyzaiaadsgaaeqaaOGaeyOp a4dabaGaeyipaWJaamOvamaaBaaaleaacaWGcbGaamiBaiaadwhaca WGLbaabeaakiabg6da+aaacqGH9aqpdaGcaaqaamaalaaabaGaamyt amaaBaaaleaacaWGcbGaamiBaiaadwhacaWGLbaabeaaaOqaaiaad2 eadaWgaaWcbaGaciOuaiaacwgacaWGKbaabeaaaaaabeaakiabg2da 9maalaaabaGaamOCamaaBaaaleaacaWGcbaabeaaaOqaaiaadkhada WgaaWcbaGaamOuaaqabaaaaaaa@511B@

Note that the product of mass times speed is the momentum,  p, and the ratio of the average momentums is

p Red p Blue = M Red M Blue < v Red > < v Blue > = r Red r Blue MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam iCamaaBaaaleaaciGGsbGaaiyzaiaadsgaaeqaaaGcbaGaamiCamaa BaaaleaacaWGcbGaamiBaiaadwhacaWGLbaabeaaaaGccqGH9aqpda Wcaaqaaiaad2eadaWgaaWcbaGaciOuaiaacwgacaWGKbaabeaaaOqa aiaad2eadaWgaaWcbaGaamOqaiaadYgacaWG1bGaamyzaaqabaaaaO WaaSaaaeaacqGH8aapcaWG2bWaaSbaaSqaaiGackfacaGGLbGaamiz aaqabaGccqGH+aGpaeaacqGH8aapcaWG2bWaaSbaaSqaaiaadkeaca WGSbGaamyDaiaadwgaaeqaaOGaeyOpa4daaiabg2da9maalaaabaGa amOCamaaBaaaleaaciGGsbGaaiyzaiaadsgaaeqaaaGcbaGaamOCam aaBaaaleaacaWGcbGaamiBaiaadwhacaWGLbaabeaaaaaaaa@5E7F@

If, for example, rR>rB this asymmetry results in a net random walk of momentum (Mv) from left to right.  Therefore the equation developed in the previous section will not be valid.