Drude-Lorentz Theory of Dielectric Constant and speed of light in solids

The equation of motion for an electron that is bound by a simple spring of spring constant k is

 

m d 2 x d t 2 +b dx dt +kx=e E 0 cos(ωt) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaWcaa qaaiaadsgadaahaaWcbeqaaiaaikdaaaGccaWG4baabaGaamizaiaa dshadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSIaamOyamaalaaaba GaamizaiaadIhaaeaacaWGKbGaamiDaaaacqGHRaWkcaWGRbGaamiE aiabg2da9iaadwgacaWGfbWaaSbaaSqaaiaaicdaaeqaaOGaci4yai aac+gacaGGZbGaaiikaiabeM8a3jaadshacaGGPaaaaa@4FA7@  

(1.1)

where m is the mass, b is the drag coefficient, and e is the electron charge.

This equation is most easily solved by converting to a complex number format where E(t) and x(t) are the real parts of

E 0 exp(iωt) x 0 exp(iωt) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaWgaa WcbaGaaGimaaqabaGcciGGLbGaaiiEaiaacchacaGGOaGaamyAaiab eM8a3jaadshacaGGPaGaaGPaVlaaykW7caWG4bWaaSbaaSqaaiaaic daaeqaaOGaciyzaiaacIhacaGGWbGaaiikaiaadMgacqaHjpWDcaWG 0bGaaiykaaaa@4C78@  

(1.2)

Then equation 1 becomes:

 

(m ω 2 +ibω+k) x 0 =e E 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcacqGHsi slcaWGTbGaeqyYdC3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamyA aiaadkgacqaHjpWDcqGHRaWkcaWGRbGaaiykaiaadIhadaWgaaWcba GaaGimaaqabaGccqGH9aqpcaWGLbGaamyramaaBaaaleaacaaIWaaa beaaaaa@47C6@  

(1.3)

or solving for x0:

x 0 = e E 0 (m ω 2 +ibω+k) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaaGimaaqabaGccqGH9aqpdaWcaaqaaiaadwgacaWGfbWaaSba aSqaaiaaicdaaeqaaaGcbaGaaiikaiabgkHiTiaad2gacqaHjpWDda ahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWGPbGaamOyaiabeM8a3jab gUcaRiaadUgacaGGPaaaaaaa@47E0@  

(1.4)

Equation 2 is usually written in the form:

x 0 = e m E 0 ( ω 2 +iγω+ ω 0 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaaGimaaqabaGccqGH9aqpdaWcaaqaamaalaaabaGaamyzaaqa aiaad2gaaaGaamyramaaBaaaleaacaaIWaaabeaaaOqaaiaacIcacq GHsislcqaHjpWDdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWGPbGa eq4SdCMaeqyYdCNaey4kaSIaeqyYdC3aa0baaSqaaiaaicdaaeaaca aIYaaaaOGaaiykaaaaaaa@4B3A@  

(1.5)

where

ω 0 2 = k m ,γ= b m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaDa aaleaacaaIWaaabaGaaGOmaaaakiabg2da9maalaaabaGaam4Aaaqa aiaad2gaaaGaaiilaiaaykW7caaMc8Uaeq4SdCMaeyypa0ZaaSaaae aacaWGIbaabaGaamyBaaaaaaa@44B9@  

(1.6)

The real part of the equation 3 is:

x 0 = e m E 0 ( ω 0 2 ω 2 ) ( ω 0 2 ω 2 ) 2 + γ 2 ω 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaaGimaaqabaGccqGH9aqpdaWcaaqaamaalaaabaGaamyzaaqa aiaad2gaaaGaamyramaaBaaaleaacaaIWaaabeaakiaacIcacqaHjp WDdaqhaaWcbaGaaGimaaqaaiaaikdaaaGccqGHsislcqaHjpWDdaah aaWcbeqaaiaaikdaaaGccaGGPaaabaGaaiikaiabeM8a3naaDaaale aacaaIWaaabaGaaGOmaaaakiabgkHiTiabeM8a3naaCaaaleqabaGa aGOmaaaakiaacMcadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcqaHZo WzdaahaaWcbeqaaiaaikdaaaGccqaHjpWDdaahaaWcbeqaaiaaikda aaaaaaaa@54B9@  

(1.7)

In a relatively transparent medium, ( ω 0 2 ω 2 ) 2 >> γ 2 ω 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcacqaHjp WDdaqhaaWcbaGaaGimaaqaaiaaikdaaaGccqGHsislcqaHjpWDdaah aaWcbeqaaiaaikdaaaGccaGGPaWaaWbaaSqabeaacaaIYaaaaOGaey Opa4JaeyOpa4Jaeq4SdC2aaWbaaSqabeaacaaIYaaaaOGaeqyYdC3a aWbaaSqabeaacaaIYaaaaaaa@46BE@ .  Also for the purposes of this document, we will assume that ω 0 2 >> ω 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaDa aaleaacaaIWaaabaGaaGOmaaaakiabg6da+iabg6da+iabeM8a3naa CaaaleqabaGaaGOmaaaaaaa@3E2B@  which means that the electric field frequency is not near any absorption resonances of the nearly transparent medium.  Then equation 4 becomes:

x 0 = e m E 0 ω 0 2 = eE k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaaGimaaqabaGccqGH9aqpdaWcaaqaamaalaaabaGaamyzaaqa aiaad2gaaaGaamyramaaBaaaleaacaaIWaaabeaaaOqaaiabeM8a3n aaDaaaleaacaaIWaaabaGaaGOmaaaaaaGccqGH9aqpdaWcaaqaaiaa dwgacaWGfbaabaGaam4Aaaaaaaa@43C8@  

(1.8)

which is the expression for x0 in a static electric field.  This just means that the electron experiences no delay in following the electric field. 

The dipole moment associated with a single electron is then

p=e x 0 = e 2 E k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadchacqGH9a qpcaWGLbGaamiEamaaBaaaleaacaaIWaaabeaakiabg2da9maalaaa baGaamyzamaaCaaaleqabaGaaGOmaaaakiaadweaaeaacaWGRbaaaa aa@3F6A@  

(1.9)

If there are n such electrons per unit volume then the polarization, P, per unit volume is:

 

P=n e 2 E k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfacqGH9a qpcaWGUbWaaSaaaeaacaWGLbWaaWbaaSqabeaacaaIYaaaaOGaamyr aaqaaiaadUgaaaaaaa@3C60@  

(1.10)

In SI units, the expression for the displacement field, D, in terms of E and/or P is:

D=εE= ε 0 E+P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadseacqGH9a qpcqaH1oqzcaWGfbGaeyypa0JaeqyTdu2aaSbaaSqaaiaaicdaaeqa aOGaamyraiabgUcaRiaadcfaaaa@4049@  

(1.11)

But using expression 5 we have:

D=εE= ε 0 E+P=[ ε 0 +n e 2 k ]E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadseacqGH9a qpcqaH1oqzcaWGfbGaeyypa0JaeqyTdu2aaSbaaSqaaiaaicdaaeqa aOGaamyraiabgUcaRiaadcfacqGH9aqpdaWadaqaaiabew7aLnaaBa aaleaacaaIWaaabeaakiabgUcaRiaad6gadaWcaaqaaiaadwgadaah aaWcbeqaaiaaikdaaaaakeaacaWGRbaaaaGaay5waiaaw2faaiaadw eaaaa@4B54@  

(1.12)

which also has units of polarization per unit volume and

which indicates that

ε= ε 0 +n e 2 k ε 0 + ε 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew7aLjabg2 da9iabew7aLnaaBaaaleaacaaIWaaabeaakiabgUcaRiaad6gadaWc aaqaaiaadwgadaahaaWcbeqaaiaaikdaaaaakeaacaWGRbaaaiabgg Mi6kabew7aLnaaBaaaleaacaaIWaaabeaakiabgUcaRiabew7aLnaa BaaaleaacaaIXaaabeaaaaa@47B1@  

(1.13)

where

ε 1 = n e 2 k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew7aLnaaBa aaleaacaaIXaaabeaakiabg2da9maalaaabaGaamOBaiaadwgadaah aaWcbeqaaiaaikdaaaaakeaacaWGRbaaaaaa@3D59@  

(1.14)

 

Since k is expressed in Newtons (kg-meter/sec2)  per meter, the above expression has units

C 2 N L L 3 = C 2 mL L s 2 L 3 = C 2 s 2 m L 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam 4qamaaCaaaleqabaGaaGOmaaaaaOqaamaalaaabaGaamOtaaqaaiaa dYeaaaGaamitamaaCaaaleqabaGaaG4maaaaaaGccqGH9aqpdaWcaa qaaiaadoeadaahaaWcbeqaaiaaikdaaaaakeaadaWcaaqaaiaad2ga caWGmbaabaGaamitaiaadohadaahaaWcbeqaaiaaikdaaaaaaOGaam itamaaCaaaleqabaGaaG4maaaaaaGccqGH9aqpdaWcaaqaaiaadoea daahaaWcbeqaaiaaikdaaaGccaWGZbWaaWbaaSqabeaacaaIYaaaaa GcbaGaamyBaiaadYeadaahaaWcbeqaaiaaiodaaaaaaaaa@4BBD@  

(1.15)

where C is coulombs, s is seconds, m is kg, and L is meters.

The units of ε0 are also C 2 s 2 m L 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam 4qamaaCaaaleqabaGaaGOmaaaakiaadohadaahaaWcbeqaaiaaikda aaaakeaacaWGTbGaamitamaaCaaaleqabaGaaGOmaaaaaaaaaa@3C4D@  as seen in http://www.ebyte.it/library/educards/sidimensions/SiDimensionsAlfaList.html#f

 

Therefore, ε1 has the same units as ε0.

 

One might want to know what is the quotient n/ω02 to make ε1=ε0?

n ω 0 2 = ε 0 m q 2 =8.85x 10 12 0.91x 10 30 (1.6x 10 19 ) 2 =3.1x 10 4 sec 2 mete r 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam OBaaqaaiabeM8a3naaDaaaleaacaaIWaaabaGaaGOmaaaaaaGccqGH 9aqpcqaH1oqzdaWgaaWcbaGaaGimaaqabaGcdaWcaaqaaiaad2gaae aacaWGXbWaaWbaaSqabeaacaaIYaaaaaaakiabg2da9iaaiIdacaGG UaGaaGioaiaaiwdacaWG4bGaaGymaiaaicdadaahaaWcbeqaaiabgk HiTiaaigdacaaIYaGaaGPaVdaakmaalaaabaGaaGimaiaac6cacaaI 5aGaaGymaiaadIhacaaIXaGaaGimamaaCaaaleqabaGaeyOeI0IaaG 4maiaaicdaaaaakeaacaGGOaGaaGymaiaac6cacaaI2aGaamiEaiaa igdacaaIWaWaaWbaaSqabeaacqGHsislcaaIXaGaaGyoaaaakiaacM cadaahaaWcbeqaaiaaikdaaaaaaOGaeyypa0JaaG4maiaac6cacaaI XaGaamiEaiaaigdacaaIWaWaaWbaaSqabeaacqGHsislcaaI0aGaaG PaVdaakiGacohacaGGLbGaai4yamaaCaaaleqabaGaaGOmaaaakiaa d2gacaWGLbGaamiDaiaadwgacaWGYbWaaWbaaSqabeaacqGHsislca aIZaaaaaaa@706F@  

(1.16)

 

 

Thus ε1 is to be compared with ε0 which is the polarizability of free space.  The speed of light in the medium is proportional to

 

c 1 μ 0 ( ε 0 + n q 2 m ω 0 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadogacqGHDi sTdaWcaaqaaiaaigdaaeaadaGcaaqaaiabeY7aTnaaBaaaleaacaaI WaaabeaakmaabmaabaGaeqyTdu2aaSbaaSqaaiaaicdaaeqaaOGaey 4kaSYaaSaaaeaacaWGUbGaamyCamaaCaaaleqabaGaaGOmaaaaaOqa aiaad2gacqaHjpWDdaqhaaWcbaGaaGimaaqaaiaaikdaaaaaaaGcca GLOaGaayzkaaaaleqaaaaaaaa@4839@  

(1.17)

where m0 is the magnetic permeability and is not an important variable in most transparent media.

Therefore higher dipole density and lower resonant frequency tend to reduce the speed of light.  Alternatively, if the electron charge were increased and the electron mass decreased, then the speed would also be reduced.

 

Note that ε1μ0 has the units: (Where A=Amps, sec=seconds, m=meters kg=kilograms)

ε 1 μ 0 = n q 2 m ω o 2 μ 0 1 m 3 (Asec) 2 kg sec 2 kgm sec 2 A 2 = sec 2 m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew7aLnaaBa aaleaacaaIXaaabeaakiabeY7aTnaaBaaaleaacaaIWaaabeaakiab g2da9maalaaabaGaamOBaiaadghadaahaaWcbeqaaiaaikdaaaaake aacaWGTbGaeqyYdC3aa0baaSqaaiaad+gaaeaacaaIYaaaaaaakiab eY7aTnaaBaaaleaacaaIWaaabeaakiablUNiMnaalaaabaWaaSaaae aacaaIXaaabaGaamyBamaaCaaaleqabaGaaG4maaaaaaGccaGGOaGa amyqaiabgkHiTiGacohacaGGLbGaai4yaiaacMcadaahaaWcbeqaai aaikdaaaaakeaacaWGRbGaam4zaiaaykW7ciGGZbGaaiyzaiaacoga daahaaWcbeqaaiabgkHiTiaaikdaaaaaaOWaaSaaaeaacaWGRbGaam 4zaiabgkHiTiaad2gacqGHsislciGGZbGaaiyzaiaacogadaahaaWc beqaaiabgkHiTiaaikdaaaaakeaacaWGbbWaaWbaaSqabeaacaaIYa aaaaaakiabg2da9maalaaabaGaci4CaiaacwgacaGGJbWaaWbaaSqa beaacaaIYaaaaaGcbaGaamyBamaaCaaaleqabaGaaGOmaaaaaaaaaa@6B5B@  

(1.18)

where the units of μ0 are Newtons A-2.

 

In comparison to shear waves in solids which have speed:

v s = E 2ρ(1+ν) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAhadaWgaa WcbaGaam4CaaqabaGccqGH9aqpdaGcaaqaamaalaaabaGaamyraaqa aiaaikdacqaHbpGCcaGGOaGaaGymaiabgUcaRiabe27aUjaacMcaaa aaleqaaaaa@4139@  

(1.19)

 

where E is the stiffness (Newton/m2) , ρ is the mass density (kg/m2), and ν the Poisson ratio. In the limit that e1>>e0, the equivalent of the stiffness to density ratio is

E 2ρ(1+ν) m ω 0 2 μ 0 n q 2 = kg sec 2 m 3 sec 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam yraaqaaiaaikdacqaHbpGCcaGGOaGaaGymaiabgUcaRiabe27aUjaa cMcaaaGaeS4EIy2aaSaaaeaacaWGTbGaeqyYdC3aa0baaSqaaiaaic daaeaacaaIYaaaaaGcbaGaeqiVd02aaSbaaSqaaiaaicdaaeqaaOGa amOBaiaadghadaahaaWcbeqaaiaaikdaaaaaaOGaeyypa0ZaaSaaae aacaWGRbGaam4zaiaaykW7ciGGZbGaaiyzaiaacogadaahaaWcbeqa aiabgkHiTiaaikdaaaGccaWGTbWaaWbaaSqabeaacaaIZaaaaaGcba Gaci4CaiaacwgacaGGJbWaaWbaaSqabeaacqGHsislcaaIYaaaaaaa aaa@592C@  

(1.20)

On the right hand side, the electron mass density is:

ρ=nm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYjabg2 da9iaad6gacaWGTbaaaa@3A96@  thus:

E 2ρ(1+ν) m 2 ω 0 2 μ 0 ρ q 2 = k g 2 sec 2 Nt A 2 kgmete r 3 A 2 sec 2 = kg sec 4 kgmete r 2 sec 2 = mete r 2 sec 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam yraaqaaiaaikdacqaHbpGCcaGGOaGaaGymaiabgUcaRiabe27aUjaa cMcaaaGaeS4EIy2aaSaaaeaacaWGTbWaaWbaaSqabeaacaaIYaaaaO GaeqyYdC3aa0baaSqaaiaaicdaaeaacaaIYaaaaaGcbaGaeqiVd02a aSbaaSqaaiaaicdaaeqaaOGaeqyWdiNaamyCamaaCaaaleqabaGaaG OmaaaaaaGccqGH9aqpdaWcaaqaaiaadUgacaWGNbWaaWbaaSqabeaa caaIYaaaaOGaci4CaiaacwgacaGGJbWaaWbaaSqabeaacqGHsislca aIYaaaaaGcbaGaamOtaiaadshacaWGbbWaaWbaaSqabeaacqGHsisl caaIYaaaaOGaam4AaiaadEgacaaMc8UaamyBaiaadwgacaWG0bGaam yzaiaadkhadaahaaWcbeqaaiabgkHiTiaaiodaaaGccaWGbbWaaWba aSqabeaacaaIYaaaaOGaaGPaVlGacohacaGGLbGaai4yamaaCaaale qabaGaaGOmaaaaaaGccqGH9aqpdaWcaaqaaiaadUgacaWGNbGaaGPa VlGacohacaGGLbGaai4yamaaCaaaleqabaGaeyOeI0IaaGinaaaaaO qaaiaadUgacaWGNbGaaGPaVlaad2gacaWGLbGaamiDaiaadwgacaWG YbWaaWbaaSqabeaacqGHsislcaaIYaaaaOGaaGPaVlGacohacaGGLb Gaai4yamaaCaaaleqabaGaeyOeI0IaaGOmaaaaaaGccqGH9aqpdaWc aaqaaiaad2gacaWGLbGaamiDaiaadwgacaWGYbWaaWbaaSqabeaaca aIYaaaaaGcbaGaci4CaiaacwgacaGGJbWaaWbaaSqabeaacaaIYaaa aaaaaaa@8D09@  

(1.21)

and therefore the shear stiffness G=E/(2(1+ν)) corresponds to

G= E 2(1+ν) m 2 ω 0 2 μ 0 q 2 = km μ 0 q 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEeacqGH9a qpdaWcaaqaaiaadweaaeaacaaIYaGaaiikaiaaigdacqGHRaWkcqaH 9oGBcaGGPaaaaiablUNiMnaalaaabaGaamyBamaaCaaaleqabaGaaG OmaaaakiabeM8a3naaDaaaleaacaaIWaaabaGaaGOmaaaaaOqaaiab eY7aTnaaBaaaleaacaaIWaaabeaakiaadghadaahaaWcbeqaaiaaik daaaaaaOGaeyypa0ZaaSaaaeaacaWGRbGaamyBaaqaaiabeY7aTnaa BaaaleaacaaIWaaabeaakiaadghadaahaaWcbeqaaiaaikdaaaaaaa aa@5110@  

(1.22)

where w02 =k/m and k is the spring constant (N/m) of the bound electron.

The units of μ0 are Newton/Amp2 and therefore the units of the denominator are N-sec2

And the overall units of Gequiv are

km μ 0 q 2 = Nkgmete r 1 N sec 2 = kg meter sec 2 = kgmeter sec 2 mete r 2 Newton mete r 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam 4Aaiaad2gaaeaacqaH8oqBdaWgaaWcbaGaaGimaaqabaGccaWGXbWa aWbaaSqabeaacaaIYaaaaaaakiabg2da9maalaaabaGaamOtaiaadU gacaWGNbGaaGPaVlaad2gacaWGLbGaamiDaiaadwgacaWGYbWaaWba aSqabeaacqGHsislcaaIXaaaaaGcbaGaamOtaiGacohacaGGLbGaai 4yamaaCaaaleqabaGaaGOmaaaaaaGccqGH9aqpdaWcaaqaaiaadUga caWGNbaabaGaamyBaiaadwgacaWG0bGaamyzaiaadkhacaaMc8Uaci 4CaiaacwgacaGGJbWaaWbaaSqabeaacaaIYaaaaaaakiabg2da9maa laaabaGaam4AaiaadEgacqGHsislcaWGTbGaamyzaiaadshacaWGLb GaamOCaiabgkHiTiGacohacaGGLbGaai4yamaaCaaaleqabaGaeyOe I0IaaGOmaaaaaOqaaiaad2gacaWGLbGaamiDaiaadwgacaWGYbWaaW baaSqabeaacaaIYaaaaaaakiabggMi6oaalaaabaGaamOtaiaadwga caWG3bGaamiDaiaad+gacaWGUbaabaGaamyBaiaadwgacaWG0bGaam yzaiaadkhadaahaaWcbeqaaiaaikdaaaaaaaaa@7AB4@  

(1.23)

as expected. 

 

Note from the calculation below that the electromagnetic “stiffness” is ~1015 Nt/m2 compared to the typical 2x1011 N/m2 stiffness of steel.  In addition, the electron mass density is small, on the order of 10-2 kg m-3 versus 104 kg m-3 for steel.   The ratio of the speed of light in solids to the speed of sound in solids is of the order of 2e8/2e3=1e5 as expected from the above quantities.

 

Another way to view the effect of ε1 on the speed of light in a solid is to assign fictitious electrons with fictitious density, nv, and fictitious spring constant, kv, to all of vacuum and thereby create a fraction with the same value as ε0

μ 0 ε= μ 0 ( ε 0 + ε 1 ) μ 0 ( n v q 2 k v + n s q 2 k s )= μ 0 ( n v q 2 k s +n q 2 k v k v k s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIWaaabeaakiabew7aLjabg2da9iabeY7aTnaaBaaaleaa caaIWaaabeaakmaabmaabaGaeqyTdu2aaSbaaSqaaiaaicdaaeqaaO Gaey4kaSIaeqyTdu2aaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzk aaGaeS4EIyMaeqiVd02aaSbaaSqaaiaaicdaaeqaaOWaaeWaaeaada Wcaaqaaiaad6gadaWgaaWcbaGaamODaaqabaGccaWGXbWaaWbaaSqa beaacaaIYaaaaaGcbaGaam4AamaaBaaaleaacaWG2baabeaaaaGccq GHRaWkdaWcaaqaaiaad6gadaWgaaWcbaGaam4CaaqabaGccaWGXbWa aWbaaSqabeaacaaIYaaaaaGcbaGaam4AamaaBaaaleaacaWGZbaabe aaaaaakiaawIcacaGLPaaacaaMc8Uaeyypa0JaeqiVd02aaSbaaSqa aiaaicdaaeqaaOWaaeWaaeaadaWcaaqaaiaad6gadaWgaaWcbaGaam ODaaqabaGccaWGXbWaaWbaaSqabeaacaaIYaaaaOGaam4AamaaBaaa leaacaWGZbaabeaakiabgUcaRiaad6gacaWGXbWaaWbaaSqabeaaca aIYaaaaOGaam4AamaaBaaaleaacaWG2baabeaaaOqaaiaadUgadaWg aaWcbaGaamODaaqabaGccaWGRbWaaSbaaSqaaiaadohaaeqaaaaaaO GaayjkaiaawMcaaaaa@6FB2@  

(1.24)

where nv/kv is of the same order of magnitude as ns/ks.

The consequence of this is, in the solid, that the spring constant assigned to vacuum acts in series (rather than in parallel) with the spring constant assigned to the electrons thereby reducing the combined stiffness and thereby reducing the speed of light in the solid.  Also note that the speed in the solid is reduced whether ε1 exceeds ε0 or otherwise.