Distortions and Waves in Elastic Media

Introduction

            This animation will explore waves in elastic media at the individual atom level.  The elastic here will be represented by the massive nuclei generally held at some equilibrium distances by springs which really represent the electron clouds surrounding the nuclei.  When an elastic wave is introduced, the distances between the nuclei change periodically with both time and space.  For simplicity, we will assume what is called plane waves where entire lattice planes move with respect to their neighboring planes.   The most important goal here is to help visualize the kinetics of the waves.  We will work with two types of wave:

1. Transverse waves:  Here the lattice planes slide parallel to their surface with respect to both their nominal position and time so that the distance between planes remains constant.

2. Longitudinal waves: Here the lattice planes move along their normals so that the distance between planes varies sinusoidally with respect to both nominal position and time.

Figures:

Figure 1: Transverse Elastic wave.  In this case the mode number is 3 so there are 3 nodes in the lattice positions.

Figure 2: Longitudinal Elastic wave.  In this case the mode number is 3 so there are 3 nodes  in the lattice plane horizontal positions.

from their equilibrium length of Δl and a difference stretch of 2δl.

Figure 3.  Shear Load Cell.  The cell on the left is not loaded and its horizontal lengths are l0 while the diagonal spring lengths are l0(2)1/2The cell on the right has enough downward force applied to its right side loading plate to cause the horizontal springs to deflect to angles θ.  In order to obtain reasonable ratios of shear to normal modulus in a 3D model, we would need to include the 4 body diagonal springs of the cubic cell but these are not shown here.

Figure 4: Normal Load Cell.  Normal extensional strain of a cell similar to the one in Figure 3.  The cell on the left is unloaded while the cell on the right has a strain of εx=0.3.  The Poisson ratio of the strained cell is 0.4 causing a shortening of the vertical springs.  In addition to the front face shown here, the restoring force for the normal strain includes either the top or bottom face of the cube with its diagonal springs.  In order to obtain reasonable ratios of shear to normal modulus in a 3D model, we would need to include the 4 body diagonal springs of the cubic cell but these are not shown here.

Figure 5: Showing a solid made up of nuclei and springs.  It is assembled from 3D unit cells.  Each unit cell contains a springs along the (x,y,z) axes as well as 2 diagonal springs on each of the three faces adjacent to the (x,y,z) axes of the cell.    In this case, the 9 springs of the first unit cell are colored red.  The dangling springs of the edge cells which would be there when the entire solid is made up of 3D unit cells are made invisible for clarity.  Four body diagonal springs that should be included are omitted for clarity. Four body diagonal springs that should be included are omitted for clarity.  It is very important to understand how many of each type of spring are contained in a solid made up of (nx,ny,nz) cells.

Math

A. Shear Modulus of Spring Model

            A spring model of a solid that results in a reasonable shear modulus is shown in Figure 3.  On the sheared version on the right, the lengths of the previously horizontal springs are increased to

l= l 0 cosθ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYgacqGH9a qpdaWcaaqaaiaadYgadaWgaaWcbaGaaGimaaqabaaakeaaciGGJbGa ai4BaiaacohacqaH4oqCaaaaaa@3E5C@  

(1.1)

Since the expansion of the cosine for small θ has no linear terms, the previously horizontal springs have no effect on the small deflection shear modulus.

Using the law of cosines of the angles opposite the diagonals to get the lengths of the diagonal springs we have:

l d1 = l 0 2 + l 2 2 l 0 lcos(π/2+θ) l d2 = l 0 2 + l 2 2 l 0 lcos(π/2θ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamiBam aaBaaaleaacaWGKbGaaGymaaqabaGccqGH9aqpdaGcaaqaaiaadYga daqhaaWcbaGaaGimaaqaaiaaikdaaaGccqGHRaWkcaWGSbWaaWbaaS qabeaacaaIYaaaaOGaeyOeI0IaaGOmaiaadYgadaWgaaWcbaGaaGim aaqabaGccaWGSbGaci4yaiaac+gacaGGZbGaaiikaiabec8aWjaac+ cacaaIYaGaey4kaSIaeqiUdeNaaiykaaWcbeaaaOqaaiaadYgadaWg aaWcbaGaamizaiaaikdaaeqaaOGaeyypa0ZaaOaaaeaacaWGSbWaa0 baaSqaaiaaicdaaeaacaaIYaaaaOGaey4kaSIaamiBamaaCaaaleqa baGaaGOmaaaakiabgkHiTiaaikdacaWGSbWaaSbaaSqaaiaaicdaae qaaOGaamiBaiGacogacaGGVbGaai4CaiaacIcacqaHapaCcaGGVaGa aGOmaiabgkHiTiabeI7aXjaacMcaaSqabaaaaaa@657E@  

(1.2)

where d1 denotes the longer diagonal and d2 denotes the shorter diagonal.

Note that

cos(π/2+θ)=sinθ cos(π/2θ)=sinθ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaci4yai aac+gacaGGZbGaaiikaiabec8aWjaac+cacaaIYaGaey4kaSIaeqiU deNaaiykaiabg2da9iabgkHiTiGacohacaGGPbGaaiOBaiabeI7aXb qaaiGacogacaGGVbGaai4CaiaacIcacqaHapaCcaGGVaGaaGOmaiab gkHiTiabeI7aXjaacMcacqGH9aqpciGGZbGaaiyAaiaac6gacqaH4o qCaaaa@55F2@  

(1.3)

Both diagonal springs exert a linear restoring force when the shear load, F, is applied to the right side plate.  Since θ<<1, sin θ = θ, and we may expand equations (1.2) to first order and obtain:

l d1 l 0 2 + l 2 ( 1+ l 0 l l 0 2 + l 2 θ ) l d2 = l 0 2 + l 2 ( 1 l 0 l l 0 2 + l 2 θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamiBam aaBaaaleaacaWGKbGaaGymaaqabaGccqGHijYUdaGcaaqaaiaadYga daqhaaWcbaGaaGimaaqaaiaaikdaaaGccqGHRaWkcaWGSbWaaWbaaS qabeaacaaIYaaaaaqabaGcdaqadaqaaiaaigdacqGHRaWkdaWcaaqa aiaadYgadaWgaaWcbaGaaGimaaqabaGccaWGSbaabaGaamiBamaaDa aaleaacaaIWaaabaGaaGOmaaaakiabgUcaRiaadYgadaahaaWcbeqa aiaaikdaaaaaaOGaeqiUdehacaGLOaGaayzkaaaabaGaamiBamaaBa aaleaacaWGKbGaaGOmaaqabaGccqGH9aqpdaGcaaqaaiaadYgadaqh aaWcbaGaaGimaaqaaiaaikdaaaGccqGHRaWkcaWGSbWaaWbaaSqabe aacaaIYaaaaaqabaGcdaqadaqaaiaaigdacqGHsisldaWcaaqaaiaa dYgadaWgaaWcbaGaaGimaaqabaGccaWGSbaabaGaamiBamaaDaaale aacaaIWaaabaGaaGOmaaaakiabgUcaRiaadYgadaahaaWcbeqaaiaa ikdaaaaaaOGaeqiUdehacaGLOaGaayzkaaaaaaa@6377@  

(1.4)

Further, since cos θ is to a second order approximation 1, l=l0, so that equations 1.12 become:

l d1 2 l 0 ( 1+ l 0 2 2 l 0 2 θ )= l d (1+θ/2) l d2 = 2 l 0 ( 1 l 0 2 2 l 0 2 θ )= l d (1θ/2) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamiBam aaBaaaleaacaWGKbGaaGymaaqabaGccqGHijYUdaGcaaqaaiaaikda aSqabaGccaWGSbWaaSbaaSqaaiaaicdaaeqaaOWaaeWaaeaacaaIXa Gaey4kaSYaaSaaaeaacaWGSbWaa0baaSqaaiaaicdaaeaacaaIYaaa aaGcbaGaaGOmaiaadYgadaqhaaWcbaGaaGimaaqaaiaaikdaaaaaaO GaeqiUdehacaGLOaGaayzkaaGaeyypa0JaamiBamaaBaaaleaacaWG KbaabeaakiaacIcacaaIXaGaey4kaSIaeqiUdeNaai4laiaaikdaca GGPaaabaGaamiBamaaBaaaleaacaWGKbGaaGOmaaqabaGccqGH9aqp daGcaaqaaiaaikdaaSqabaGccaWGSbWaaSbaaSqaaiaaicdaaeqaaO WaaeWaaeaacaaIXaGaeyOeI0YaaSaaaeaacaWGSbWaa0baaSqaaiaa icdaaeaacaaIYaaaaaGcbaGaaGOmaiaadYgadaqhaaWcbaGaaGimaa qaaiaaikdaaaaaaOGaeqiUdehacaGLOaGaayzkaaGaeyypa0JaamiB amaaBaaaleaacaWGKbaabeaakiaacIcacaaIXaGaeyOeI0IaeqiUde Naai4laiaaikdacaGGPaaaaaa@6C04@  

(1.5)

where ld =l0(2)1/2 is the unloaded diagonal length.

If κd is the spring constant for the face diagonal springs then the tensile restoring force then for d1 is

F d1 = κ d ( l d1 l d )= κ d θ l 0 2 /2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaamizaiaaigdaaeqaaOGaeyypa0JaeqOUdS2aaSbaaSqaaiaa dsgaaeqaaOGaaiikaiaadYgadaWgaaWcbaGaamizaiaaigdaaeqaaO GaeyOeI0IaamiBamaaBaaaleaacaWGKbaabeaakiaacMcacqGH9aqp cqaH6oWAdaWgaaWcbaGaamizaaqabaGccqaH4oqCcaWGSbWaaSbaaS qaaiaaicdaaeqaaOWaaOaaaeaacaaIYaaaleqaaOGaai4laiaaikda aaa@4D46@  

(1.6)

while the compressive restoring force for d2 is

F d2 = κ d ( l d2 l d )= κ d θ l 0 2 /2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaamizaiaaikdaaeqaaOGaeyypa0JaeqOUdS2aaSbaaSqaaiaa dsgaaeqaaOGaaiikaiaadYgadaWgaaWcbaGaamizaiaaikdaaeqaaO GaeyOeI0IaamiBamaaBaaaleaacaWGKbaabeaakiaacMcacqGH9aqp cqGHsislcqaH6oWAdaWgaaWcbaGaamizaaqabaGccqaH4oqCcaWGSb WaaSbaaSqaaiaaicdaaeqaaOWaaOaaaeaacaaIYaaaleqaaOGaai4l aiaaikdaaaa@4E35@  

(1.7)

For small θ, both of these restoring forces act at 45 degrees from the vertical against the downward force applied to the load cell. The total upward force is then:

 

( F d1 F d2 )sin(π/4)= κ d θ l 0 2 2 = κ d θ l 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcacaWGgb WaaSbaaSqaaiaadsgacaaIXaaabeaakiabgkHiTiaadAeadaWgaaWc baGaamizaiaaikdaaeqaaOGaaiykaiaacohacaGGPbGaaiOBaiaacI cacqaHapaCcaGGVaGaaGinaiaacMcacqGH9aqpdaWcaaqaaiabeQ7a RnaaBaaaleaacaWGKbaabeaakiabeI7aXjaadYgadaWgaaWcbaGaaG imaaqabaGcdaGcaaqaaiaaikdaaSqabaaakeaadaGcaaqaaiaaikda aSqabaaaaOGaeyypa0JaeqOUdS2aaSbaaSqaaiaadsgaaeqaaOGaeq iUdeNaamiBamaaBaaaleaacaaIWaaabeaaaaa@557D@  

(1.8)

This will result in a shear modulus, G, of

G= F Aθ = κ d l 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEeacqGH9a qpdaWcaaqaaiaadAeaaeaacaWGbbGaeqiUdehaaiabg2da9maalaaa baGaeqOUdS2aaSbaaSqaaiaadsgaaeqaaaGcbaGaamiBamaaBaaale aacaaIWaaabeaaaaaaaa@40D2@  

(1.9)

where A is the area of the right hand plate of the load cell.

B. Normal (or Young's) Modulus of Spring Model

Here it's important to first decide what constitutes a unit cubic cell.  A unit cubic cell consists of enough cube faces such that we could build an entire lattice from a group of these.  Such a unit cell is shown, colored red, in Figure 5. As such, it will be sufficient to include the top horizontal spring of the back face, the bottom spring of the left face, and the vertical spring of the back face.  This is sufficient to let us stack the unit cells vertically or horizontally and extend the lattice.  

For the normal forces we need to the diagonal springs of the top face, the left face, and the back face.  For the force in the x direction we need only to include the diagonal springs of the top and back faces.

The normal (tensile and compressive) force in the x direction for a load cell turn out to be:

F N =δl( κ+2 κ d ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaamOtaaqabaGccqGH9aqpcqaH0oazcaWGSbWaaeWaaeaacqaH 6oWAcqGHRaWkcaaIYaGaeqOUdS2aaSbaaSqaaiaadsgaaeqaaaGcca GLOaGaayzkaaaaaa@4305@  

(1.10)

where the 1 relates to the top horizontal spring and the 2 relates to the 4 diagonal springs of the top and back faces.  This results in a Young's modulus of

E= F N A l 0 δl = ( κ+2 κ d ) l 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweacqGH9a qpdaWcaaqaaiaadAeadaWgaaWcbaGaamOtaaqabaaakeaacaWGbbaa amaalaaabaGaamiBamaaBaaaleaacaaIWaaabeaaaOqaaiabes7aKj aadYgaaaGaeyypa0ZaaSaaaeaadaqadaqaaiabeQ7aRjabgUcaRiaa ikdacqaH6oWAdaWgaaWcbaGaamizaaqabaaakiaawIcacaGLPaaaae aacaWGSbWaaSbaaSqaaiaaicdaaeqaaaaaaaa@4983@  

(1.11)

Equations (1.9) and (1.11) would result in a ratio of G to E of

G E = κ d κ+2 κ d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam 4raaqaaiaadweaaaGaeyypa0ZaaSaaaeaacqaH6oWAdaWgaaWcbaGa amizaaqabaaakeaacqaH6oWAcqGHRaWkcaaIYaGaeqOUdS2aaSbaaS qaaiaadsgaaeqaaaaaaaa@418F@  

(1.12)

and, for this case, where volume is held constant, the ratio should be 1/3 but we expect that κd<κ so our result is less than 1/3.  But we haven't included the body diagonal springs of the cell and these should be used in a 3 dimensional solid. 

C. Shear Modulus Including Cell Body Diagonals.

            If we let the top-upper-left vertex of the cell remain at the origin (0,0,0) and make the nominal side length l0, then the other vertices are at ( 0,0,l), (0,l,l), (0,l,0) which completes the left face vertices and at (l,0,0), (l,0,l), (l,l,l), and (l,l,0) which completes the right face vertices.  The body diagonals always have one coordinate on the left face and one on the right face.  They are (stating the right face second):

(0,0,0)-(l,l,l), (0,0,l)-(l,l,0), (0,l,l)-(l,0,0), and (0,l,0)-(l,0,l).

When the cube is under a shear load, the y values of the body diagonal ends on the right face are deflected downward by θ since all the side lengths are l.  Therefore the set of diagonals become

(0,0,0)-(l,l+ θ,l), (0,0,l)-(l,l+ θ,0), (0,l,l)-(l, θ,0), and (0,l,0)-(l, θ,l).

The lengths of the diagonals become:

l d =l 2+ (1+θ) 2 3 l(1+θ/3) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYgadaWgaa WcbaGaamizaaqabaGccqGH9aqpcaWGSbWaaOaaaeaacaaIYaGaey4k aSIaaiikaiaaigdacqGHRaWkcqaH4oqCcaGGPaWaaWbaaSqabeaaca aIYaaaaaqabaGccqGHijYUdaGcaaqaaiaaiodaaSqabaGccaWGSbGa aiikaiaaigdacqGHRaWkcqaH4oqCcaGGVaGaaG4maiaacMcaaaa@4ADF@  

(1.13)

The y components of the diagonals are +/-l and their nominal lengths are the square root of 3 so the force along the y direction will be:

F dy = κ bd l 3 3 θ( l 3 )= κ bd θ l 0 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaamizaiaadMhaaeqaaOGaeyypa0JaeqOUdS2aaSbaaSqaaiaa dkgacaWGKbaabeaakiaadYgadaWcaaqaamaakaaabaGaaG4maaWcbe aaaOqaaiaaiodaaaGaeqiUde3aaeWaaeaadaWcaaqaaiaadYgaaeaa daGcaaqaaiaaiodaaSqabaaaaaGccaGLOaGaayzkaaGaeyypa0ZaaS aaaeaacqaH6oWAdaWgaaWcbaGaamOyaiaadsgaaeqaaOGaeqiUdeNa amiBamaaBaaaleaacaaIWaaabeaaaOqaaiaaiodaaaaaaa@4E75@  

(1.14)

where κbd is the spring constant of he body diagonal springs.

Since there are 4 of the springs and all are working to restore the shear to zero, the total force is

F d = 4 3 κ bd θ l 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaamizaaqabaGccqGH9aqpdaWcaaqaaiaaisdaaeaacaaIZaaa aiabeQ7aRnaaBaaaleaacaWGIbGaamizaaqabaGccqaH4oqCcaWGSb WaaSbaaSqaaiaaicdaaeqaaaaa@41AB@  

(1.15)

This is to be added to the force produced in the previous section by the face diagonals

F dy =θl( κ d +4/3 κ bd ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaamizaiaadMhaaeqaaOGaeyypa0JaeqiUdeNaamiBaiaacIca cqaH6oWAdaWgaaWcbaGaamizaaqabaGccqGHRaWkcaaI0aGaai4lai aaiodacqaH6oWAdaWgaaWcbaGaamOyaiaadsgaaeqaaOGaaiykaaaa @4772@  

(1.16)

and will result in a shear modulus of

G= F dy Aθ = 1 l 0 ( κ d +4 κ bd /3) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEeacqGH9a qpdaWcaaqaaiaadAeadaWgaaWcbaGaamizaiaadMhaaeqaaaGcbaGa amyqaiabeI7aXbaacqGH9aqpdaWcaaqaaiaaigdaaeaacaWGSbWaaS baaSqaaiaaicdaaeqaaaaakiaacIcacqaH6oWAdaWgaaWcbaGaamiz aaqabaGccqGHRaWkcaaI0aGaeqOUdS2aaSbaaSqaaiaadkgacaWGKb aabeaakiaac+cacaaIZaGaaiykaaaa@4BD5@  

(1.17)

D. Normal Modulus Including Cell Body Diagonals.

            The only difference from the shear case is that the strain adds increment εl0 to the x coordinate instead of the y coordinates of the ends of the diagonals on the right face of the cube.  So we again have an additional restoring force of

F d = 4 3 κ bd ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaamizaaqabaGccqGH9aqpdaWcaaqaaiaaisdaaeaacaaIZaaa aiabeQ7aRnaaBaaaleaacaWGIbGaamizaaqabaGccqaH1oqzaaa@3FC5@  

(1.18)

and the total Young's modulus becomes:

E=(κ+2 κ d +4 κ bd /3) 1 l 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweacqGH9a qpcaGGOaGaeqOUdSMaey4kaSIaaGOmaiabeQ7aRnaaBaaaleaacaWG KbaabeaakiabgUcaRiaaisdacqaH6oWAdaWgaaWcbaGaamOyaiaads gaaeqaaOGaai4laiaaiodacaGGPaWaaSaaaeaacaaIXaaabaGaamiB amaaBaaaleaacaaIWaaabeaaaaaaaa@489F@  

(1.19)

Then the ratio of G to E becomes:

G E = ( κ d +4 κ bd /3) (κ+2 κ d +4 κ bd /3) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam 4raaqaaiaadweaaaGaeyypa0ZaaSaaaeaacaGGOaGaeqOUdS2aaSba aSqaaiaadsgaaeqaaOGaey4kaSIaaGinaiabeQ7aRnaaBaaaleaaca WGIbGaamizaaqabaGccaGGVaGaaG4maiaacMcaaeaacaGGOaGaeqOU dSMaey4kaSIaaGOmaiabeQ7aRnaaBaaaleaacaWGKbaabeaakiabgU caRiaaisdacqaH6oWAdaWgaaWcbaGaamOyaiaadsgaaeqaaOGaai4l aiaaiodacaGGPaaaaaaa@51DB@  

(1.20)

Poisson Ratio

Since the equation for the relation between E and G is

E G =2(1+ν) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam yraaqaaiaadEeaaaGaeyypa0JaaGOmaiaacIcacaaIXaGaey4kaSIa eqyVd4Maaiykaaaa@3E01@  

(1.21)

where ν is Poisson's ratio we obtain the following result for ν:

ν= E 2G 1= (κ+2 κ d +4 κ bd /3) 2 κ d +8 κ bd /3 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabe27aUjabg2 da9maalaaabaGaamyraaqaaiaaikdacaWGhbaaaiabgkHiTiaaigda cqGH9aqpdaWcaaqaaiaacIcacqaH6oWAcqGHRaWkcaaIYaGaeqOUdS 2aaSbaaSqaaiaadsgaaeqaaOGaey4kaSIaaGinaiabeQ7aRnaaBaaa leaacaWGIbGaamizaaqabaGccaGGVaGaaG4maiaacMcaaeaacaaIYa GaeqOUdS2aaSbaaSqaaiaadsgaaeqaaOGaey4kaSIaaGioaiabeQ7a RnaaBaaaleaacaWGIbGaamizaaqabaGccaGGVaGaaG4maaaacqGHsi slcaaIXaaaaa@580C@  

(1.22)

We expect ν to be between 0 and 1/2 for an isotropic material.  If all three spring constants are equal, then Poisson ratio =0.  If we include the fact that κ will be smaller for the diagonal and body diagonal springs, we would have gotten a larger Poisson ratio.

Waves

            The main goal of this section is to compute the wave speeds and oscillation frequencies of the transverse and longitudinal mode of oscillation.  We will make use of the small angle approximation, sin θ=θ where θ is expressed in radians.

In the long wavelength limit where λ>>l0, the wave spatial and temporal variation can be expressed as

u=Asin k x x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwhacqGH9a qpcaWGbbGaci4CaiaacMgacaGGUbGaam4AamaaBaaaleaacaWG4baa beaakiaadIhaaaa@3EA9@  

(1.23)

where u=y for the transverse wave and u=x for the longitudinal wave, A is the amplitude of the wave, and kx is the wave number of the particular oscillation. 

1. Longitudinal Wave Speed and Frequency

In this case the particle displacement is along the direction of the wave.  First you need to realize that a constant value of du/dx across the entire solid is just a simple displacement of the solid and results in no spring compression or elongation.  The force on the nth lattice plane is due to the difference in the spring displacement just to the right of it with respect to the spring just to the left of it.  If the value of the spring displacements can be obtained from

δ l i1 = l 0 d u i1 dx δ l i = l 0 d u i dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeqiTdq MaamiBamaaBaaaleaacaWGPbGaeyOeI0IaaGymaaqabaGccqGH9aqp caWGSbWaaSbaaSqaaiaaicdaaeqaaOWaaSaaaeaacaWGKbGaamyDam aaBaaaleaacaWGPbGaeyOeI0IaaGymaaqabaaakeaacaWGKbGaamiE aaaaaeaacqaH0oazcaWGSbWaaSbaaSqaaiaadMgaaeqaaOGaeyypa0 JaamiBamaaBaaaleaacaaIWaaabeaakmaalaaabaGaamizaiaadwha daWgaaWcbaGaamyAaaqabaaakeaacaWGKbGaamiEaaaaaaaa@507E@  

(1.24)

The difference of these spring displacements is:

δ l i δ l i1 = l 0 ( d u i dx d u i1 dx )= l 0 2 d 2 u i d x 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaadY gadaWgaaWcbaGaamyAaaqabaGccqGHsislcqaH0oazcaWGSbWaaSba aSqaaiaadMgacqGHsislcaaIXaaabeaakiabg2da9iaadYgadaWgaa WcbaGaaGimaaqabaGcdaqadaqaamaalaaabaGaamizaiaadwhadaWg aaWcbaGaamyAaaqabaaakeaacaWGKbGaamiEaaaacqGHsisldaWcaa qaaiaadsgacaWG1bWaaSbaaSqaaiaadMgacqGHsislcaaIXaaabeaa aOqaaiaadsgacaWG4baaaaGaayjkaiaawMcaaiabg2da9iaadYgada qhaaWcbaGaaGimaaqaaiaaikdaaaGcdaWcaaqaaiaadsgadaahaaWc beqaaiaaikdaaaGccaWG1bWaaSbaaSqaaiaadMgaaeqaaaGcbaGaam izaiaadIhadaahaaWcbeqaaiaaikdaaaaaaaaa@5B70@  

(1.25)

where we've assumed that l0 is small enough that we could use it to define the second derivative.  The force on one nucleus in the nth lattice plane is then just

F x =(κ+2 κ d +4 κ bd /3) l 0 2 d 2 u n d x 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaamiEaaqabaGccqGH9aqpcaGGOaGaeqOUdSMaey4kaSIaaGOm aiabeQ7aRnaaBaaaleaacaWGKbaabeaakiabgUcaRiaaisdacqaH6o WAdaWgaaWcbaGaamOyaiaadsgaaeqaaOGaai4laiaaiodacaGGPaGa amiBamaaDaaaleaacaaIWaaabaGaaGOmaaaakmaalaaabaGaamizam aaCaaaleqabaGaaGOmaaaakiaadwhadaWgaaWcbaGaamOBaaqabaaa keaacaWGKbGaamiEamaaCaaaleqabaGaaGOmaaaaaaaaaa@50AD@  

(1.26)

 where k is the spring constant.  The acceleration of the mass, m, of each nucleus is then

 

d 2 u n d t 2 = F x m = (κ+2 κ d +4 κ bd /3) m l 0 2 d 2 u n d x 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izamaaCaaaleqabaGaaGOmaaaakiaadwhadaWgaaWcbaGaamOBaaqa baaakeaacaWGKbGaamiDamaaCaaaleqabaGaaGOmaaaaaaGccqGH9a qpdaWcaaqaaiaadAeadaWgaaWcbaGaamiEaaqabaaakeaacaWGTbaa aiabg2da9maalaaabaGaaiikaiabeQ7aRjabgUcaRiaaikdacqaH6o WAdaWgaaWcbaGaamizaaqabaGccqGHRaWkcaaI0aGaeqOUdS2aaSba aSqaaiaadkgacaWGKbaabeaakiaac+cacaaIZaGaaiykaaqaaiaad2 gaaaGaamiBamaaDaaaleaacaaIWaaabaGaaGOmaaaakmaalaaabaGa amizamaaCaaaleqabaGaaGOmaaaakiaadwhadaWgaaWcbaGaamOBaa qabaaakeaacaWGKbGaamiEamaaCaaaleqabaGaaGOmaaaaaaaaaa@5A9B@  

(1.27)

Equation (1.27) is the wave equation.  It specifies a wave of speed

c long = κ+2 κ d +4 κ bd /3 m l 0 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadogadaWgaa WcbaGaamiBaiaad+gacaWGUbGaam4zaaqabaGccqGH9aqpdaGcaaqa amaalaaabaGaeqOUdSMaey4kaSIaaGOmaiabeQ7aRnaaBaaaleaaca WGKbaabeaakiabgUcaRiaaisdacqaH6oWAdaWgaaWcbaGaamOyaiaa dsgaaeqaaOGaai4laiaaiodaaeaacaWGTbaaaiaadYgadaqhaaWcba GaaGimaaqaaiaaikdaaaaabeaaaaa@4C62@  

(1.28)

The wavelength, λ, of the wave will be a function of its wavelength, f (which is by the driving perturbation) as:

λ long = c long f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSnaaBa aaleaacaWGSbGaam4Baiaad6gacaWGNbaabeaakiabg2da9maalaaa baGaam4yamaaBaaaleaacaWGSbGaam4Baiaad6gacaWGNbaabeaaaO qaaiaadAgaaaaaaa@427C@  

(1.29)

The form of the wave is then:

u(x,t)=Acos( 2π( ft x λ ) )+Bsin( 2π( ft x λ ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwhacaGGOa GaamiEaiaacYcacaWG0bGaaiykaiabg2da9iaadgeaciGGJbGaai4B aiaacohadaqadaqaaiaaikdacqaHapaCdaqadaqaaiaadAgacaWG0b GaeyOeI0YaaSaaaeaacaWG4baabaGaeq4UdWgaaaGaayjkaiaawMca aaGaayjkaiaawMcaaiabgUcaRiaadkeaciGGZbGaaiyAaiaac6gada qadaqaaiaaikdacqaHapaCdaqadaqaaiaadAgacaWG0bGaeyOeI0Ya aSaaaeaacaWG4baabaGaeq4UdWgaaaGaayjkaiaawMcaaaGaayjkai aawMcaaaaa@5A3E@  

(1.30)

where A and B are constants determined by the driving conditions.

 

2. Transverse Wave Frequency

This analysis might be similar to the analysis of the wave speed and frequency of a pre-tensioned string.  For the string, its vibration does not generally change the built-in tension so the solution for the frequency treats this pre-tension as a constant.  However, for a solid at equilibrium, we don't generally have a large built-in tension between lattice planes.  This leads, as we will show below, to amplitude-dependent wave parameters.

As depicted in Figure 3, for small slopes, du/dx<<1, we need to have an angle between the springs adjacent to the nth nucleus in order to have a net vertical force on the nucleus.

You need to realize that if du/dx is constant across the entire solid, this just represents a rotation about the z axis as shown in Figure 6 where no springs are either compressed or elongated. 

Figure 6: A valid solid with constant du/dx.  As you can see, constant du/dx result in a simple rotation of the solid.

One might at first think that a solid with all cells having the same du/dx  with relative shear between the cells as shown in Figure 7 might be possible.  However, the du/dx variation requires a discontinuity in u and that is not physical. 

Figure 7: A system where all cells have a vertical shear of 0.3 radians.  However, this is not possible since

it requires a non-physical discontinuity at the left-right cell boundaries.

 

From this discussion it should be obvious that the important parameter is the change in du/dx from lattice plane to lattice plane as shown in Figure 8 and that change is

            du dx ) n du dx ) n1 = d 2 u d x 2 l 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabiaabaWaaS aaaeaacaWGKbGaamyDaaqaaiaadsgacaWG4baaaaGaayzkaaWaaSba aSqaaiaad6gaaeqaaOGaeyOeI0YaaeGaaeaadaWcaaqaaiaadsgaca WG1baabaGaamizaiaadIhaaaaacaGLPaaadaWgaaWcbaGaamOBaiab gkHiTiaaigdaaeqaaOGaeyypa0ZaaSaaaeaacaWGKbWaaWbaaSqabe aacaaIYaaaaOGaamyDaaqaaiaadsgacaWG4bWaaWbaaSqabeaacaaI YaaaaaaakiaadYgadaWgaaWcbaGaaGimaaqabaaaaa@4CB0@             (1.31) 

Figure 8: Two adjacent cells with different du/dx and therefore a non-zero d2u/dx2.

 

The force on any lattice plane is, from the section on shear modulus:

F= n z n y θl( κ d +4/3 κ bd ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeacqGH9a qpcaWGUbWaaSbaaSqaaiaadQhaaeqaaOGaamOBamaaBaaaleaacaWG 5baabeaakiabeI7aXjaadYgacaGGOaGaeqOUdS2aaSbaaSqaaiaads gaaeqaaOGaey4kaSIaaGinaiaac+cacaaIZaGaeqOUdS2aaSbaaSqa aiaadkgacaWGKbaabeaakiaacMcaaaa@49A4@  

(1.32)

where nzny is the number of nuclei in that lattice plane.  We need the difference in the force between those on the  i-1 and i lattice planes to obtain the correct force on the ith plane:

δF= n z n y l( κ d +4/3 κ bd ) dθ dx = n z n y l 2 ( κ d +4/3 κ bd ) d 2 u d x 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeqiTdq MaamOraiabg2da9iaad6gadaWgaaWcbaGaamOEaaqabaGccaWGUbWa aSbaaSqaaiaadMhaaeqaaOGaamiBaiaacIcacqaH6oWAdaWgaaWcba GaamizaaqabaGccqGHRaWkcaaI0aGaai4laiaaiodacqaH6oWAdaWg aaWcbaGaamOyaiaadsgaaeqaaOGaaiykamaalaaabaGaamizaiabeI 7aXbqaaiaadsgacaWG4baaaiabg2da9aqaaiaad6gadaWgaaWcbaGa amOEaaqabaGccaWGUbWaaSbaaSqaaiaadMhaaeqaaOGaamiBamaaCa aaleqabaGaaGOmaaaakiaacIcacqaH6oWAdaWgaaWcbaGaamizaaqa baGccqGHRaWkcaaI0aGaai4laiaaiodacqaH6oWAdaWgaaWcbaGaam OyaiaadsgaaeqaaOGaaiykamaalaaabaGaamizamaaCaaaleqabaGa aGOmaaaakiaadwhaaeaacaWGKbGaamiEamaaCaaaleqabaGaaGOmaa aaaaaaaaa@660F@  

(1.33)

We set δF equal to the mass, m, of the nuclei in the lattice plane, mnynz, times the acceleration in the u direction:

 

n y n z m d 2 u d t 2 = n z n y l 2 ( κ d +4/3 κ bd ) d 2 u d x 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gadaWgaa WcbaGaamyEaaqabaGccaWGUbWaaSbaaSqaaiaadQhaaeqaaOGaamyB amaalaaabaGaamizamaaCaaaleqabaGaaGOmaaaakiaadwhaaeaaca WGKbGaamiDamaaCaaaleqabaGaaGOmaaaaaaGccqGH9aqpcaWGUbWa aSbaaSqaaiaadQhaaeqaaOGaamOBamaaBaaaleaacaWG5baabeaaki aadYgadaahaaWcbeqaaiaaikdaaaGccaGGOaGaeqOUdS2aaSbaaSqa aiaadsgaaeqaaOGaey4kaSIaaGinaiaac+cacaaIZaGaeqOUdS2aaS baaSqaaiaadkgacaWGKbaabeaakiaacMcadaWcaaqaaiaadsgadaah aaWcbeqaaiaaikdaaaGccaWG1baabaGaamizaiaadIhadaahaaWcbe qaaiaaikdaaaaaaaaa@58C7@  

(1.34)

Equation (1.34) is the wave equation and the wave's speed is:

c= ( κ d +4/3 κ bd ) l 2 m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadogacqGH9a qpdaGcaaqaamaalaaabaGaaiikaiabeQ7aRnaaBaaaleaacaWGKbaa beaakiabgUcaRiaaisdacaGGVaGaaG4maiabeQ7aRnaaBaaaleaaca WGIbGaamizaaqabaGccaGGPaGaamiBamaaCaaaleqabaGaaGOmaaaa aOqaaiaad2gaaaaaleqaaaaa@45CC@  

(1.35)

The wavelength of the wave depends on the speed and frequency, f:

λ shear = c shear f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSnaaBa aaleaacaWGZbGaamiAaiaadwgacaWGHbGaamOCaaqabaGccqGH9aqp daWcaaqaaiaadogadaWgaaWcbaGaam4CaiaadIgacaWGLbGaamyyai aadkhaaeqaaaGcbaGaamOzaaaaaaa@444C@  

(1.36)