Vector Plot of Airfoil Stream Speeds

Introduction

            The stream speeds as a function of position around an airfoil can be modeled as a combination of the simple horizontal wind speed, a transitional air speed that is higher near the top and bottom surfaces of the airfoil, and, when there is an angle of attack, a circulating air vortex that tends to cancel the wind speed on the bottom of the airfoil and enhance the wind speed on the top of he airfoil.  The strength of this latter vortex is proportional to the wind speed and the angle of attack with peak strength near the stall angle.  The vortex is responsible for the lift and some of the drag (called induced drag) of the airfoil. 

 

In this document,  I will handle just the free stream as it distorts around a thin ellipse that may be rotated to some angle of attack.

Math

            I chose to first use a thin ellipse as the airfoil.  An ellipse has the advantage over a circular arc airfoil in that the stagnation point actually moves as the angle of attack changes.  We need to be able to find the tangents and normals at all points on this ellipse.  In particular, we need to locate point on the rotated ellipse whose normal is along the horizontal direction since that will be the stagnation point where the drift velocity is cancelled by the conformally mapped airflow.

           

Let the ellipse be centered at the origin of the (x,y) coordinate system and have semi-major axis a and semi-minor axis b and be rotated clockwise by angle α

                                                                       

In the un-tilted frame of reference, the normal vector is parallel to the following vector:

N=bcos( θ para )x+asin( θ para )y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaah6eacqGH9a qpcaWGIbGaci4yaiaac+gacaGGZbGaaiikaiabeI7aXnaaBaaaleaa caWGWbGaamyyaiaadkhacaWGHbaabeaakiaacMcacaWH4bGaey4kaS IaamyyaiGacohacaGGPbGaaiOBaiaacIcacqaH4oqCdaWgaaWcbaGa amiCaiaadggacaWGYbGaamyyaaqabaGccaGGPaGaaCyEaaaa@501F@  

(1.1)

where qpara is the angle referred to by the parametric description of the ellipse:

x p =acos θ para y p =bsin θ para MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamiEam aaBaaaleaacaWGWbaabeaakiabg2da9iaadggaciGGJbGaai4Baiaa cohacqaH4oqCdaWgaaWcbaGaamiCaiaadggacaWGYbGaamyyaaqaba aakeaacaWG5bWaaSbaaSqaaiaadchaaeqaaOGaeyypa0JaamOyaiGa cohacaGGPbGaaiOBaiabeI7aXnaaBaaaleaacaWGWbGaamyyaiaadk hacaWGHbaabeaaaaaa@4F05@  

(1.2)

 

To become a useful unit vector N should be normalized as follows.

n= bcos( θ para )x+asin( θ para )y b 2 cos 2 ( θ para )+ a 2 sin 2 ( θ para ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaah6gacqGH9a qpdaWcaaqaaiaadkgaciGGJbGaai4BaiaacohacaGGOaGaeqiUde3a aSbaaSqaaiaadchacaWGHbGaamOCaiaadggaaeqaaOGaaiykaiaahI hacqGHRaWkcaWGHbGaci4CaiaacMgacaGGUbGaaiikaiabeI7aXnaa BaaaleaacaWGWbGaamyyaiaadkhacaWGHbaabeaakiaacMcacaWH5b aabaWaaOaaaeaacaWGIbWaaWbaaSqabeaacaaIYaaaaOGaci4yaiaa c+gacaGGZbWaaWbaaSqabeaacaaIYaaaaOGaaiikaiabeI7aXnaaBa aaleaacaWGWbGaamyyaiaadkhacaWGHbaabeaakiaacMcacqGHRaWk caWGHbWaaWbaaSqabeaacaaIYaaaaOGaci4CaiaacMgacaGGUbWaaW baaSqabeaacaaIYaaaaOGaaiikaiabeI7aXnaaBaaaleaacaWGWbGa amyyaiaadkhacaWGHbaabeaakiaacMcaaSqabaaaaaaa@6A8A@  

(1.3)

We want to find the parametric angle for the normal that points along the -x axis when the ellipse is rotated clockwise by angle α.  Therefore we rotate the arbitrary normal by angle α 

n xy =( n x ' n y ' )=( cosα sinα sinα cosα )( n x n y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaah6gadaWgaa WcbaGaaCiEaiaahMhaaeqaaOGaeyypa0ZaaeWaaeaafaqabeGabaaa baGaamOBamaaBaaaleaacaWG4baabeaakiaacEcaaeaacaWGUbWaaS baaSqaaiaadMhaaeqaaOGaai4jaaaaaiaawIcacaGLPaaacqGH9aqp daqadaqaauaabeqaciaaaeaaciGGJbGaai4BaiaacohacqaHXoqyae aacqGHsislciGGZbGaaiyAaiaac6gacqaHXoqyaeaaciGGZbGaaiyA aiaac6gacqaHXoqyaeaaciGGJbGaai4BaiaacohacqaHXoqyaaaaca GLOaGaayzkaaWaaeWaaeaafaqabeGabaaabaGaamOBamaaBaaaleaa caWG4baabeaaaOqaaiaad6gadaWgaaWcbaGaamyEaaqabaaaaaGcca GLOaGaayzkaaaaaa@5C9B@  

(1.4)

We seek the value for θpara where n has zero y component and a negative x component

bcos θ para sinα+asin θ para cosα=0 bcos θ para cosαasin θ para sinα= b 2 cos 2 θ para + a 2 sin 2 θ para MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamOyai GacogacaGGVbGaai4CaiabeI7aXnaaBaaaleaacaWGWbGaamyyaiaa dkhacaWGHbaabeaakiGacohacaGGPbGaaiOBaiabeg7aHjabgUcaRi aadggaciGGZbGaaiyAaiaac6gacqaH4oqCdaWgaaWcbaGaamiCaiaa dggacaWGYbGaamyyaaqabaGcciGGJbGaai4BaiaacohacqaHXoqycq GH9aqpcaaIWaaabaGaamOyaiGacogacaGGVbGaai4CaiabeI7aXnaa BaaaleaacaWGWbGaamyyaiaadkhacaWGHbaabeaakiGacogacaGGVb Gaai4Caiabeg7aHjabgkHiTiaadggaciGGZbGaaiyAaiaac6gacqaH 4oqCdaWgaaWcbaGaamiCaiaadggacaWGYbGaamyyaaqabaGcciGGZb GaaiyAaiaac6gacqaHXoqycqGH9aqpcqGHsisldaGcaaqaaiaadkga daahaaWcbeqaaiaaikdaaaGcciGGJbGaai4BaiaacohadaahaaWcbe qaaiaaikdaaaGccqaH4oqCdaWgaaWcbaGaamiCaiaadggacaWGYbGa amyyaaqabaGccqGHRaWkcaWGHbWaaWbaaSqabeaacaaIYaaaaOGaci 4CaiaacMgacaGGUbWaaWbaaSqabeaacaaIYaaaaOGaeqiUde3aaSba aSqaaiaadchacaWGHbGaamOCaiaadggaaeqaaaqabaaaaaa@8A3B@  

(1.5)

asin θ para bcos θ para = sinα cosα sin θ para cos θ para = b a sinα cosα MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaWaaSaaae aacaGGHbGaci4CaiaacMgacaGGUbGaeqiUde3aaSbaaSqaaiaadcha caWGHbGaamOCaiaadggaaeqaaaGcbaGaamOyaiGacogacaGGVbGaai 4CaiabeI7aXnaaBaaaleaacaWGWbGaamyyaiaadkhacaWGHbaabeaa aaGccqGH9aqpcqGHsisldaWcaaqaaiGacohacaGGPbGaaiOBaiabeg 7aHbqaaiGacogacaGGVbGaai4Caiabeg7aHbaaaeaadaWcaaqaaiGa cohacaGGPbGaaiOBaiabeI7aXnaaBaaaleaacaWGWbGaamyyaiaadk hacaWGHbaabeaaaOqaaiGacogacaGGVbGaai4CaiabeI7aXnaaBaaa leaacaWGWbGaamyyaiaadkhacaWGHbaabeaaaaGccqGH9aqpcqGHsi sldaWcaaqaaiaadkgaaeaacaWGHbaaamaalaaabaGaci4CaiaacMga caGGUbGaeqySdegabaGaci4yaiaac+gacaGGZbGaeqySdegaaaaaaa@717A@  

(1.6)

which indicates that

tan θ para = b a tanα θ para = tan 1 ( b a tanα ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaciiDai aacggacaGGUbGaeqiUde3aaSbaaSqaaiaadchacaWGHbGaamOCaiaa dggaaeqaaOGaeyypa0JaeyOeI0YaaSaaaeaacaWGIbaabaGaamyyaa aaciGG0bGaaiyyaiaac6gacqaHXoqyaeaacqaH4oqCdaWgaaWcbaGa amiCaiaadggacaWGYbGaamyyaaqabaGccqGH9aqpcqGHsislciGG0b Gaaiyyaiaac6gadaahaaWcbeqaaiabgkHiTiaaigdaaaGcdaqadaqa amaalaaabaGaamOyaaqaaiaadggaaaGaciiDaiaacggacaGGUbGaeq ySdegacaGLOaGaayzkaaaaaaa@5AC4@  

(1.7)

Since the description of the ellipse in the un-rotated frame is

           

x p =acos θ para y p =bsin θ para MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamiEam aaBaaaleaacaWGWbaabeaakiabg2da9iaadggaciGGJbGaai4Baiaa cohacqaH4oqCdaWgaaWcbaGaamiCaiaadggacaWGYbGaamyyaaqaba aakeaacaWG5bWaaSbaaSqaaiaadchaaeqaaOGaeyypa0JaamOyaiGa cohacaGGPbGaaiOBaiabeI7aXnaaBaaaleaacaWGWbGaamyyaiaadk hacaWGHbaabeaaaaaa@4F05@  

(1.8)

To locate this point in the xy frame, we must apply the rotation matrix:

 

r xy =( x xy y xy )=( cosα sinα sinα cosα )( x p y p ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahkhadaWgaa WcbaGaaCiEaiaahMhaaeqaaOGaeyypa0ZaaeWaaeaafaqabeGabaaa baGaamiEamaaBaaaleaacaWG4bGaamyEaaqabaaakeaacaWG5bWaaS baaSqaaiaadIhacaWG5baabeaaaaaakiaawIcacaGLPaaacqGH9aqp daqadaqaauaabeqaciaaaeaaciGGJbGaai4BaiaacohacqaHXoqyae aacqGHsislciGGZbGaaiyAaiaac6gacqaHXoqyaeaaciGGZbGaaiyA aiaac6gacqaHXoqyaeaaciGGJbGaai4BaiaacohacqaHXoqyaaaaca GLOaGaayzkaaWaaeWaaeaafaqabeGabaaabaGaamiEamaaBaaaleaa caWGWbaabeaaaOqaaiaadMhadaWgaaWcbaGaamiCaaqabaaaaaGcca GLOaGaayzkaaaaaa@5D5D@  

(1.9)

 

This is the result for the position of the stagnation point at which both vx and vy are zero. 

 

 

Computation of an elliptical airfoil's velocity potential that has zero imaginary component on the boundary

Define:

c 2 = a 2 b 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadogadaWgaa WcbaGaaGOmaaqabaGccqGH9aqpcaWGHbWaaWbaaSqabeaacaaIYaaa aOGaeyOeI0IaamOyamaaCaaaleqabaGaaGOmaaaaaaa@3D61@  

(1.10)

Airfoil border is described by

z b = a+b 2 exp(iθ)+ a 2 b 2 2(a+b) exp(iθ)= [ a+b 2 exp(iθ)+ c 2 2(a+b) exp(iθ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamOEam aaBaaaleaacaWGIbaabeaakiabg2da9maalaaabaGaamyyaiabgUca RiaadkgaaeaacaaIYaaaaiGacwgacaGG4bGaaiiCaiaacIcacaWGPb GaeqiUdeNaaiykaiabgUcaRmaalaaabaGaamyyamaaCaaaleqabaGa aGOmaaaakiabgkHiTiaadkgadaahaaWcbeqaaiaaikdaaaaakeaaca aIYaGaaiikaiaadggacqGHRaWkcaWGIbGaaiykaaaaciGGLbGaaiiE aiaacchacaGGOaGaeyOeI0IaamyAaiabeI7aXjaacMcacqGH9aqpae aadaWadaqaamaalaaabaGaamyyaiabgUcaRiaadkgaaeaacaaIYaaa aiGacwgacaGG4bGaaiiCaiaacIcacaWGPbGaeqiUdeNaaiykaiabgU caRmaalaaabaGaam4yamaaBaaaleaacaaIYaaabeaaaOqaaiaaikda caGGOaGaamyyaiabgUcaRiaadkgacaGGPaaaaiGacwgacaGG4bGaai iCaiaacIcacqGHsislcaWGPbGaeqiUdeNaaiykaaGaay5waiaaw2fa aaaaaa@7222@  

(1.11)

or:

z b =acosθ+ibsinθ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQhadaWgaa WcbaGaamOyaaqabaGccqGH9aqpcaWGHbGaci4yaiaac+gacaGGZbGa eqiUdeNaey4kaSIaamyAaiaadkgaciGGZbGaaiyAaiaac6gacqaH4o qCaaa@45C1@  

(1.12)

The velocity potential, ϕ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGaaKqzagaeaa aaaaaaa8qacqWFvpGzaaa@38C8@ (z), for this airfoil is obtained from the following equations:                  

2z=Z+ c 2 Z solvingforZwehave: Z(z)=z+ z 2 c 2 then: ϕ(z)=Z(z)+ d 2 Z(z) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaaGOmai aadQhacqGH9aqpcaWGAbGaey4kaSYaaSaaaeaacaWGJbWaaSbaaSqa aiaaikdaaeqaaaGcbaGaamOwaaaaaeaacaWGZbGaam4BaiaadYgaca WG2bGaamyAaiaad6gacaWGNbGaaGPaVlaadAgacaWGVbGaamOCaiaa ykW7caWGAbGaaGPaVlaadEhacaWGLbGaaGPaVlaadIgacaWGHbGaam ODaiaadwgacaGG6aaabaGaamOwaiaacIcacaWG6bGaaiykaiabg2da 9iaadQhacqGHRaWkdaGcaaqaaiaadQhadaahaaWcbeqaaiaaikdaaa GccqGHsislcaWGJbWaaSbaaSqaaiaaikdaaeqaaaqabaaakeaacaWG 0bGaamiAaiaadwgacaWGUbGaaiOoaaqaaiabew9aMjaacIcacaGG6b Gaaiykaiabg2da9iaadQfacaGGOaGaaiOEaiaacMcacqGHRaWkdaWc aaqaaiaadsgadaWgaaWcbaGaaGOmaaqabaaakeaacaWGAbGaaiikai aacQhacaGGPaaaaaaaaa@71E8@                                (1.13)

where d2 is currently unknown.

We want to find the value of d2 that makes the imaginary part of ϕ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGaaKqzagaeaa aaaaaaa8qacqWFvpGzaaa@38C8@ =0

Im[ ϕ( z b ) ]=Im[ Z( z b )+ d 2 Z( z b ) ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGacMeacaGGTb WaamWaaeaacqaHvpGzcaGGOaGaamOEamaaBaaaleaacaWGIbaabeaa kiaacMcaaiaawUfacaGLDbaacqGH9aqpciGGjbGaaiyBamaadmaaba GaamOwaiaacIcacaGG6bWaaSbaaSqaaiaadkgaaeqaaOGaaiykaiab gUcaRmaalaaabaGaamizamaaBaaaleaacaaIYaaabeaaaOqaaiaadQ facaGGOaGaaiOEamaaBaaaleaacaWGIbaabeaakiaacMcaaaaacaGL BbGaayzxaaGaeyypa0JaaGimaaaa@50C5@  

(1.14)

Im[ ϕ( z b ) ]=Im[ z b + z b 2 c 2 + d 2 z b + z b 2 c 2 ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGacMeacaGGTb WaamWaaeaacqaHvpGzcaGGOaGaamOEamaaBaaaleaacaWGIbaabeaa kiaacMcaaiaawUfacaGLDbaacqGH9aqpciGGjbGaaiyBamaadmaaba GaamOEamaaBaaaleaacaWGIbaabeaakiabgUcaRmaakaaabaGaamOE amaaDaaaleaacaWGIbaabaGaaGOmaaaakiabgkHiTiaadogadaWgaa WcbaGaaGOmaaqabaaabeaakiabgUcaRmaalaaabaGaamizamaaBaaa leaacaaIYaaabeaaaOqaaiaadQhadaWgaaWcbaGaamOyaaqabaGccq GHRaWkdaGcaaqaaiaadQhadaqhaaWcbaGaamOyaaqaaiaaikdaaaGc cqGHsislcaWGJbWaaSbaaSqaaiaaikdaaeqaaaqabaaaaaGccaGLBb GaayzxaaGaeyypa0JaaGimaaaa@597B@  

(1.15)

The simplest way to make sense of this is the use equation (1.10) in equation (1.13) thus

z b 2 c 2 = a 2 cos 2 θ+2iabsinθcosθ b 2 sin 2 θ a 2 + b 2 = b 2 cos 2 θ a 2 sin 2 θ+2iabsinθcosθ= (bcosθ+iasinθ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamOEam aaDaaaleaacaWGIbaabaGaaGOmaaaakiabgkHiTiaadogadaWgaaWc baGaaGOmaaqabaGccqGH9aqpcaWGHbWaaWbaaSqabeaacaaIYaaaaO Gaci4yaiaac+gacaGGZbWaaWbaaSqabeaacaaIYaaaaOGaeqiUdeNa ey4kaSIaaGOmaiaadMgacaWGHbGaamOyaiGacohacaGGPbGaaiOBai abeI7aXjGacogacaGGVbGaai4CaiabeI7aXjabgkHiTiaadkgadaah aaWcbeqaaiaaikdaaaGcciGGZbGaaiyAaiaac6gadaahaaWcbeqaai aaikdaaaGccqaH4oqCcqGHsislcaWGHbWaaWbaaSqabeaacaaIYaaa aOGaey4kaSIaamOyamaaCaaaleqabaGaaGOmaaaakiabg2da9aqaai aadkgadaahaaWcbeqaaiaaikdaaaGcciGGJbGaai4Baiaacohadaah aaWcbeqaaiaaikdaaaGccqaH4oqCcqGHsislcaWGHbWaaWbaaSqabe aacaaIYaaaaOGaci4CaiaacMgacaGGUbWaaWbaaSqabeaacaaIYaaa aOGaeqiUdeNaey4kaSIaaGOmaiaadMgacaWGHbGaamOyaiGacohaca GGPbGaaiOBaiabeI7aXjGacogacaGGVbGaai4CaiabeI7aXjabg2da 9iaacIcacaWGIbGaci4yaiaac+gacaGGZbGaeqiUdeNaey4kaSIaam yAaiaadggaciGGZbGaaiyAaiaac6gacqaH4oqCcaGGPaWaaWbaaSqa beaacaaIYaaaaaaaaa@8D36@  

(1.16)

Thus:

z b + z b 2 c 2 =acosθ+ibsinθ+bcosθ+iasinθ= (a+b)cosθ+i(a+b)sinθ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamOEam aaBaaaleaacaWGIbaabeaakiabgUcaRmaakaaabaGaamOEamaaDaaa leaacaWGIbaabaGaaGOmaaaakiabgkHiTiaadogadaWgaaWcbaGaaG Omaaqabaaabeaakiabg2da9iaadggaciGGJbGaai4BaiaacohacqaH 4oqCcqGHRaWkcaWGPbGaamOyaiGacohacaGGPbGaaiOBaiabeI7aXj abgUcaRiaadkgaciGGJbGaai4BaiaacohacqaH4oqCcqGHRaWkcaWG PbGaamyyaiGacohacaGGPbGaaiOBaiabeI7aXjabg2da9aqaaiaacI cacaWGHbGaey4kaSIaamOyaiaacMcaciGGJbGaai4BaiaacohacqaH 4oqCcqGHRaWkcaWGPbGaaiikaiaadggacqGHRaWkcaWGIbGaaiykai GacohacaGGPbGaaiOBaiabeI7aXbaaaa@6DED@  

(1.17)

z b + z b 2 c 2 2 + d 2 z b + z b 2 c 2 2 =(a+b)(cosθ+isinθ)+ d 2 (cosθisinθ) (a+b) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaWaaSaaae aacaWG6bWaaSbaaSqaaiaadkgaaeqaaOGaey4kaSYaaOaaaeaacaWG 6bWaa0baaSqaaiaadkgaaeaacaaIYaaaaOGaeyOeI0Iaam4yamaaBa aaleaacaaIYaaabeaaaeqaaaGcbaGaaGOmaaaacqGHRaWkdaWcaaqa aiaadsgadaWgaaWcbaGaaGOmaaqabaaakeaadaWcaaqaaiaadQhada WgaaWcbaGaamOyaaqabaGccqGHRaWkdaGcaaqaaiaadQhadaqhaaWc baGaamOyaaqaaiaaikdaaaGccqGHsislcaWGJbWaaSbaaSqaaiaaik daaeqaaaqabaaakeaacaaIYaaaaaaacqGH9aqpcaGGOaGaamyyaiab gUcaRiaadkgacaGGPaGaaiikaiaacogacaGGVbGaai4CaiabeI7aXj abgUcaRiaacMgacaGGZbGaaiyAaiaac6gacqaH4oqCcaGGPaGaey4k aSYaaSaaaeaacaWGKbWaaSbaaSqaaiaaikdaaeqaaOGaaiikaiaaco gacaGGVbGaai4CaiabeI7aXjabgkHiTiaacMgacaGGZbGaaiyAaiaa c6gacqaH4oqCcaGGPaaabaGaaiikaiaadggacqGHRaWkcaWGIbGaai ykaaaaaeaaaaaa@7017@  

(1.18)

Im( z b + z b 2 c 2 2 + d 2 z b + z b 2 c 2 2 )=(a+b)(sinθ) d 2 (sinθ) (a+b) =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGacMeacaGGTb WaaeWaaeaadaWcaaqaaiaadQhadaWgaaWcbaGaamOyaaqabaGccqGH RaWkdaGcaaqaaiaadQhadaqhaaWcbaGaamOyaaqaaiaaikdaaaGccq GHsislcaWGJbWaaSbaaSqaaiaaikdaaeqaaaqabaaakeaacaaIYaaa aiabgUcaRmaalaaabaGaamizamaaBaaaleaacaaIYaaabeaaaOqaam aalaaabaGaamOEamaaBaaaleaacaWGIbaabeaakiabgUcaRmaakaaa baGaamOEamaaDaaaleaacaWGIbaabaGaaGOmaaaakiabgkHiTiaado gadaWgaaWcbaGaaGOmaaqabaaabeaaaOqaaiaaikdaaaaaaaGaayjk aiaawMcaaiabg2da9iaacIcacaWGHbGaey4kaSIaamOyaiaacMcaca GGOaGaai4CaiaacMgacaGGUbGaeqiUdeNaaiykaiabgkHiTmaalaaa baGaamizamaaBaaaleaacaaIYaaabeaakiaacIcacaGGZbGaaiyAai aac6gacqaH4oqCcaGGPaaabaGaaiikaiaadggacqGHRaWkcaWGIbGa aiykaaaacqGH9aqpcaaIWaaaaa@686D@  

(1.19)

This implies that

           

d 2 = (a+b) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgadaWgaa WcbaGaaGOmaaqabaGccqGH9aqpcaGGOaGaamyyaiabgUcaRiaadkga caGGPaWaaWbaaSqabeaacaaIYaaaaaaa@3DBD@  

(1.20)

Then the velocity potential is proportional to the following complex function:

ϕ(z)= z+ z 2 c 2 2 + (a+b) 2 z + z 2 c 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew9aMjaacI cacaWG6bGaaiykaiabg2da9maalaaabaGaamOEaiabgUcaRmaakaaa baGaamOEamaaDaaaleaaaeaacaaIYaaaaOGaeyOeI0Iaam4yamaaBa aaleaacaaIYaaabeaaaeqaaaGcbaGaaGOmaaaacqGHRaWkdaWcaaqa aiaacIcacaWGHbGaey4kaSIaamOyaiaacMcadaahaaWcbeqaaiaaik daaaaakeaadaWcaaqaaiaadQhadaWgaaWcbaaabeaakiabgUcaRmaa kaaabaGaamOEamaaDaaaleaaaeaacaaIYaaaaOGaeyOeI0Iaam4yam aaBaaaleaacaaIYaaabeaaaeqaaaGcbaGaaGOmaaaaaaaaaa@5020@  

(1.21)

and the velocity is proportional to the gradient of ϕ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGaaKqzagaeaa aaaaaaa8qacqWFvpGzaaa@38C8@ (z).