Response of a 2D Fixed Rotor to a Disc Collision

Introduction

            In order to simulate behavior of materials which have magnetic dipoles (modeled as rigid rotors) that are fixed in position inside, we need to compute the final rotor angular rotation rate after a collision with a disc as well as the final velocity of the disc.  That calculation is performed in section 2.  In section 1, as a warm up, the response of a rotor to a known impulse is computed.

1. Response of a Stationary Rotor to an Impulse Applied to One of Its End Masses

            The basic driver involved in hard object collisions is an impulse.  An impulse is the product of a force times a very small time increment which, of course, leads to a change in momentum like mδv where m is the mass and δv is the change in the velocity.  The time increment is small enough that there will be no significant rotation of the rotor or displacement of its center of mass within the duration of the impulse.  These motions will occur after the impulse.   

            The specific diagram for this problem is shown below.  To make the problem primitive and simple, both of the initial motions are nil. The final motion will be a combination of a center of mass velocity, δvx, and a final rotation, at rate δω, about the center of mass.    The impulse is along the -x direction as shown.

 

The rotor's rotation speed changes by δω.  Here Px is the impulse Fxdt; Note that Px is negative:

2(mlδωcosa)= P x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaikdacaGGOa GaamyBaiaadYgacqaH0oazcqaHjpWDciGGJbGaai4BaiaacohacaWG HbGaaiykaiabg2da9iaadcfadaWgaaWcbaGaamiEaaqabaaaaa@4412@  

(1.1)

Solving for δω:

δω= P x 2mlcosa MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjabeM 8a3jabg2da9maalaaabaGaamiuamaaBaaaleaacaWG4baabeaaaOqa aiaaikdacaWGTbGaamiBaiGacogacaGGVbGaai4Caiaadggaaaaaaa@42D3@  

(1.2)

The energy supplied by the impulse is Fxdx which is the same as Px<vx> where <vx> is the 1/2 of the final tangential speed that will be obtained by the rotor.

Thus conservation of energy requires that:

m l 2 δ ω 2 = P x lδωcosa 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gacaWGSb WaaWbaaSqabeaacaaIYaaaaOGaeqiTdqMaeqyYdC3aaWbaaSqabeaa caaIYaaaaOGaeyypa0JaamiuamaaBaaaleaacaWG4baabeaakmaala aabaGaamiBaiabes7aKjabeM8a3jGacogacaGGVbGaai4Caiaadgga aeaacaaIYaaaaaaa@491C@  

(1.3)

The solution for δω is:

δω= P x cosa 2ml MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjabeM 8a3jabg2da9iaadcfadaWgaaWcbaGaamiEaaqabaGcdaWcaaqaaiGa cogacaGGVbGaai4CaiaadggaaeaacaaIYaGaamyBaiaadYgaaaaaaa@42D3@  

(1.4)

2. Stationary Rotor-Disc Collisions

            These are similar to hard disc collisions in terms of the momentum transfer.  However, the initial and final velocities of  each rotor end is a combination of the center of mass (CM) velocities and the rotational velocities.  Therefore the momentum changes due to both of these incident velocities have to be equal and opposite to that of the disc and the total energy due to both types of rotor velocity as well as that of the disc has to be the same before and after the collision.  For the time being we will limit ourselves to two dimensions (x,y).  We can state the r and v vectors in terms of the (x,y) coordinate system and the z axis will be the rotation axis.

 

v p = ω l(xsin a +ycos a ) v n = ω l(xsin a +ycos a ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaaCODam aaBaaaleaacaWGWbaabeaakiabg2da9iabeM8a3naaBaaaleaaaeqa aOGaamiBaiaacIcacqGHsislcaWH4bGaci4CaiaacMgacaGGUbGaam yyamaaBaaaleaaaeqaaOGaey4kaSIaaCyEaiGacogacaGGVbGaai4C aiaadggadaWgaaWcbaaabeaakiaacMcaaeaacaWH2bWaaSbaaSqaai aad6gaaeqaaOGaeyypa0JaeyOeI0IaeqyYdC3aaSbaaSqaaaqabaGc caWGSbGaaiikaiabgkHiTiaahIhaciGGZbGaaiyAaiaac6gacaWGHb WaaSbaaSqaaaqabaGccqGHRaWkcaWH5bGaci4yaiaac+gacaGGZbGa amyyamaaBaaaleaaaeqaaOGaaiykaaaaaa@5D41@  

(1.5)

where subscript p denotes one end (think positive) and n denotes the other end of the rotor, ω is the rotation speed of the rotor, l is half the distance between the rotor ends and a is the angle with respect to the x axis of the rotor's orientation.  So the program must check the distances between both the p and the n ends of each rotor and the center of the disc.  If this distance is less than or equal to the sum of the radius of the rotor end disc and that of the free disc, then a collision must be calculated.  Just as in the case of the hard discs, the momentum transfers must be equal and opposite.  However, unlike that case,  the momentum transferred to the fixed rotor will be just its rotational speed changes.

 

Figure 1: Illustration of rotor and a disc.  The rotor rotational angle with respect to the x axis  is  a and rotor center of mass velocity vr  The distance between the centers of the rotor end discs is 2l and the radius of the end discs is br while the single disc radius is bd Thus a collision is computed when the distance between disc center and either rotor end center is less than br+bdu is a unit vector along the length of the rotor, vω is a unit vector along the rotational velocity vector of the red end, and c is a unit vector along the line from the center of the disc to the red end of the rotor.

The impulse felt by the disc is along the  central vector -c so its velocity change will be along that direction also and we will assign the value δv to the magnitude of that velocity change.    This results in a new value of kinetic energy of the disc:

E d ' = m d 2 ( v d δvc)( v d δvc)= m d 2 ( v d 2 +δ v 2 2δvc v d ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaqhaa WcbaGaamizaaqaaiaacEcaaaGccqGH9aqpdaWcaaqaaiaad2gadaWg aaWcbaGaamizaaqabaaakeaacaaIYaaaaiaacIcacaWH2bWaaSbaaS qaaiaahsgaaeqaaOGaeyOeI0IaeqiTdqMaamODaiaahogacaGGPaGa eyOiGCRaaiikaiaahAhadaWgaaWcbaGaaCizaaqabaGccqGHsislcq aH0oazcaWG2bGaaC4yaiaacMcacqGH9aqpdaWcaaqaaiaad2gadaWg aaWcbaGaamizaaqabaaakeaacaaIYaaaaiaacIcacaGG2bWaa0baaS qaaiaadsgaaeaacaaIYaaaaOGaey4kaSIaeqiTdqMaamODamaaCaaa leqabaGaaGOmaaaakiabgkHiTiaaikdacqaH0oazcaWG2bGaaC4yai abgkci3kaahAhadaWgaaWcbaGaaCizaaqabaGccaGGPaaaaa@6333@  

(1.6)

as well as a new momentum

p'= m d ( v d δvc) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahchacaGGNa Gaeyypa0JaamyBamaaBaaaleaacaWGKbaabeaakiaacIcacaWH2bWa aSbaaSqaaiaadsgaaeqaaOGaeyOeI0IaeqiTdqMaamODaiaahogaca GGPaaaaa@4296@  

(1.7)

In the collision, linear momentum is not conserved because the rotor center is fixed but angular momentum about the center (rotation axis) of the rotor does have to be conserved.  The initial angular momentum of the disc is

L d = m d [lu( r r + r d )c]× v d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeadaWgaa WcbaGaamizaaqabaGccqGH9aqpcaWGTbWaaSbaaSqaaiaadsgaaeqa aOGaai4waiaadYgacaWH1bGaeyOeI0IaaiikaiaadkhadaWgaaWcba GaamOCaaqabaGccqGHRaWkcaWGYbWaaSbaaSqaaiaadsgaaeqaaOGa aiykaiaahogacaGGDbGaey41aqRaaCODamaaBaaaleaacaWGKbaabe aaaaa@4B1A@  

(1.8)

and the initial angular momentum of the rotor is

L r =2 m r l 2 ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeadaWgaa WcbaGaamOCaaqabaGccqGH9aqpcaaIYaGaamyBamaaBaaaleaacaWG YbaabeaakiaadYgadaahaaWcbeqaaiaaikdaaaGccqaHjpWDaaa@3F7B@  

(1.9)

and of course both of these angular momenta are along the z direction.  The angular momentum of the disc gets changed to

L d = m d [lu( r r + r d )c]×( v d δvc)= m d [lu( r r + r d )c]× v d m d lδv(u×c) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamitamaaBaaaleaacaWGKbaabeaakiabg2da9iaad2gapaWaaSba aSqaa8qacaWGKbaapaqabaGcpeGaai4waiaadYgacaWH1bGaeyOeI0 IaaiikaiaadkhapaWaaSbaaSqaa8qacaWGYbaapaqabaGcpeGaey4k aSIaamOCa8aadaWgaaWcbaWdbiaadsgaa8aabeaak8qacaGGPaGaaC 4yaiaac2facqGHxdaTcaGGOaGaaCODa8aadaWgaaWcbaWdbiaadsga a8aabeaak8qacqGHsislcqaH0oazcaWG2bGaaC4yaiaacMcacqGH9a qpcaWGTbWdamaaBaaaleaapeGaamizaaWdaeqaaOWdbiaacUfacaWG SbGaaCyDaiabgkHiTiaacIcacaWGYbWdamaaBaaaleaapeGaamOCaa WdaeqaaOWdbiabgUcaRiaadkhapaWaaSbaaSqaa8qacaWGKbaapaqa baGcpeGaaiykaiaahogacaGGDbGaey41aqRaaCODa8aadaWgaaWcba Wdbiaadsgaa8aabeaak8qacqGHsislcaWGTbWdamaaBaaaleaapeGa amizaaWdaeqaaOWdbiaadYgacqaH0oazcaWG2bGaaiikaiaahwhacq GHxdaTcaWHJbGaaiykaaaa@7276@  

(1.10)

and the angular momentum of the rotor becomes:

L r ' =2 m r l 2 (ω+δω) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeadaqhaa WcbaGaamOCaaqaaiaacEcaaaGccqGH9aqpcaaIYaGaamyBamaaBaaa leaacaWGYbaabeaakiaadYgadaahaaWcbeqaaiaaikdaaaGccaGGOa GaeqyYdCNaey4kaSIaeqiTdqMaeqyYdCNaaiykaaaa@45D4@  

(1.11)

The total angular momentum after the collision must be equal to that before the collision and therefore :

m d lδv(u×c)=2 m r l 2 δω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiaad2 gadaWgaaWcbaGaamizaaqabaGccaWGSbGaeqiTdqMaamODaiaacIca caWH1bGaaC41aiaahogacaGGPaGaeyypa0JaaGOmaiaad2gadaWgaa WcbaGaamOCaaqabaGccaWGSbWaaWbaaSqabeaacaaIYaaaaOGaeqiT dqMaeqyYdChaaa@4A54@  

(1.12)

The total change in kinetic energy of the disc and rotor has to equal zero and therefore we have

m d 2 ( v d 2 +δ v 2 2δvc v d )+ m r l 2 (ω+δω) 2 = m d 2 v d 2 + m r l 2 ω 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam yBamaaBaaaleaacaWGKbaabeaaaOqaaiaaikdaaaGaaiikaiaacAha daqhaaWcbaGaamizaaqaaiaaikdaaaGccqGHRaWkcqaH0oazcaWG2b WaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGOmaiabes7aKjaadAha caWHJbGaeyOiGCRaaCODamaaBaaaleaacaWHKbaabeaakiaacMcacq GHRaWkcaWGTbWaaSbaaSqaaiaadkhaaeqaaOGaamiBamaaCaaaleqa baGaaGOmaaaakiaacIcacqaHjpWDcqGHRaWkcqaH0oazcqaHjpWDca GGPaWaaWbaaSqabeaacaaIYaaaaOGaeyypa0ZaaSaaaeaacaWGTbWa aSbaaSqaaiaadsgaaeqaaaGcbaGaaGOmaaaacaGG2bWaa0baaSqaai aadsgaaeaacaaIYaaaaOGaey4kaSIaamyBamaaBaaaleaacaWGYbaa beaakiaadYgadaahaaWcbeqaaiaaikdaaaGccqaHjpWDdaahaaWcbe qaaiaaikdaaaaaaa@65EE@  

(1.13)

We can solve equations (1.12) and (1.13) for both δω and δv.  First simplifying the notation for δω we have:

δω= m d lδv(u×c) 2 m r l 2 aδv a= m d (u×c) 2 m r l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeqiTdq MaeqyYdCNaeyypa0JaeyOeI0YaaSaaaeaacaWGTbWaaSbaaSqaaiaa dsgaaeqaaOGaamiBaiabes7aKjaadAhacaGGOaGaaCyDaiaahEnaca WHJbGaaiykaaqaaiaaikdacaWGTbWaaSbaaSqaaiaadkhaaeqaaOGa amiBamaaCaaaleqabaGaaGOmaaaaaaGccqGHHjIUcaWGHbGaeqiTdq MaamODaaqaaiaadggacqGH9aqpcqGHsisldaWcaaqaaiaad2gadaWg aaWcbaGaamizaaqabaGccaGGOaGaaCyDaiaahEnacaWHJbGaaiykaa qaaiaaikdacaWGTbWaaSbaaSqaaiaadkhaaeqaaOGaamiBaaaaaaaa @5D23@  

(1.14)

In the next 4 lines we solve for δv

m d 2 [δ v 2 2δvc v d ]+ m r l 2 (2ωδω+δ ω 2 )=0 m d 2 [δ v 2 2δvc v d ]+ m r l 2 ( a 2 δ v 2 +2ωaδv)=0 δ v 2 ( m d 2 + m r l 2 a 2 )+δv( 2 m r l 2 ωa m d 2 2c v d )=0 δv= ( 2 m r l 2 ωa m d c v d ) ( m d 2 + m r l 2 a 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaWaaSaaae aacaWGTbWaaSbaaSqaaiaadsgaaeqaaaGcbaGaaGOmaaaacaGGBbGa eqiTdqMaamODamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaikdacq aH0oazcaWG2bGaaC4yaiabgkci3kaahAhadaWgaaWcbaGaaCizaaqa baGccaGGDbGaey4kaSIaamyBamaaBaaaleaacaWGYbaabeaakiaadY gadaahaaWcbeqaaiaaikdaaaGccaGGOaGaaGOmaiabeM8a3jabes7a KjabeM8a3jabgUcaRiabes7aKjabeM8a3naaDaaaleaaaeaacaaIYa aaaOGaaiykaiabg2da9iaaicdaaeaadaWcaaqaaiaad2gadaWgaaWc baGaamizaaqabaaakeaacaaIYaaaaiaacUfacqaH0oazcaWG2bWaaW baaSqabeaacaaIYaaaaOGaeyOeI0IaaGOmaiabes7aKjaadAhacaWH JbGaeyOiGCRaaCODamaaBaaaleaacaWHKbaabeaakiaac2facqGHRa WkcaWGTbWaaSbaaSqaaiaadkhaaeqaaOGaamiBamaaCaaaleqabaGa aGOmaaaakiaacIcacaWGHbWaaWbaaSqabeaacaaIYaaaaOGaeqiTdq MaamODamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdacqaHjpWD caWGHbGaeqiTdqMaamODaiaacMcacqGH9aqpcaaIWaaabaGaeqiTdq MaamODamaaCaaaleqabaGaaGOmaaaakmaabmaabaWaaSaaaeaacaWG TbWaaSbaaSqaaiaadsgaaeqaaaGcbaGaaGOmaaaacqGHRaWkcaWGTb WaaSbaaSqaaiaadkhaaeqaaOGaamiBamaaCaaaleqabaGaaGOmaaaa kiaadggadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaacqGHRa WkcqaH0oazcaWG2bWaaeWaaeaacaaIYaGaamyBamaaBaaaleaacaWG YbaabeaakiaadYgadaahaaWcbeqaaiaaikdaaaGccqaHjpWDcaWGHb GaeyOeI0YaaSaaaeaacaWGTbWaaSbaaSqaaiaadsgaaeqaaaGcbaGa aGOmaaaacaaIYaGaaC4yaiabgkci3kaahAhadaWgaaWcbaGaaCizaa qabaaakiaawIcacaGLPaaacqGH9aqpcaaIWaaabaGaeqiTdqMaamOD aiabg2da9iabgkHiTmaalaaabaWaaeWaaeaacaaIYaGaamyBamaaBa aaleaacaWGYbaabeaakiaadYgadaahaaWcbeqaaiaaikdaaaGccqaH jpWDcaWGHbGaeyOeI0IaamyBamaaBaaaleaacaWGKbaabeaakiaaho gacqGHIaYTcaWH2bWaaSbaaSqaaiaahsgaaeqaaaGccaGLOaGaayzk aaaabaWaaeWaaeaadaWcaaqaaiaad2gadaWgaaWcbaGaamizaaqaba aakeaacaaIYaaaaiabgUcaRiaad2gadaWgaaWcbaGaamOCaaqabaGc caWGSbWaaWbaaSqabeaacaaIYaaaaOGaamyyamaaCaaaleqabaGaaG OmaaaaaOGaayjkaiaawMcaaaaaaaaa@C607@  

(1.15)

and then we can insert the value of a and solve for δω:

:

δω=a ( 2 m r l 2 ωa m d c v d ) ( m d 2 + m r l 2 a 2 ) a= m d (u×c) 2 m r l δω= m d (u×c) 2 m r l ( l ω(u×c)c v d ) ( 1 2 + m d m r (u×c) 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeqiTdq MaeqyYdCNaeyypa0JaeyOeI0IaamyyamaalaaabaWaaeWaaeaacaaI YaGaamyBamaaBaaaleaacaWGYbaabeaakiaadYgadaahaaWcbeqaai aaikdaaaGccqaHjpWDcaWGHbGaeyOeI0IaamyBamaaBaaaleaacaWG KbaabeaakiaahogacqGHIaYTcaWH2bWaaSbaaSqaaiaahsgaaeqaaa GccaGLOaGaayzkaaaabaWaaeWaaeaadaWcaaqaaiaad2gadaWgaaWc baGaamizaaqabaaakeaacaaIYaaaaiabgUcaRiaad2gadaWgaaWcba GaamOCaaqabaGccaWGSbWaaWbaaSqabeaacaaIYaaaaOGaamyyamaa CaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaaaaaeaacaWGHbGaey ypa0JaeyOeI0YaaSaaaeaacaWGTbWaaSbaaSqaaiaadsgaaeqaaOGa aiikaiaahwhacaWHxdGaaC4yaiaacMcaaeaacaaIYaGaamyBamaaBa aaleaacaWGYbaabeaakiaadYgaaaaabaGaeqiTdqMaeqyYdCNaeyyp a0ZaaSaaaeaacaWGTbWaaSbaaSqaaiaadsgaaeqaaOGaaiikaiaahw hacaWHxdGaaC4yaiaacMcaaeaacaaIYaGaamyBamaaBaaaleaacaWG YbaabeaakiaadYgaaaWaaSaaaeaadaqadaqaaiabgkHiTiaadYgada ahaaWcbeqaaaaakiabeM8a3jaacIcacaWH1bGaaC41aiaahogacaGG PaGaeyOeI0IaaC4yaiabgkci3kaahAhadaWgaaWcbaGaaCizaaqaba aakiaawIcacaGLPaaaaeaadaqadaqaamaalaaabaGaaGymaaqaaiaa ikdaaaGaey4kaSYaaSaaaeaacaWGTbWaa0baaSqaaiaadsgaaeaaaa aakeaacaWGTbWaaSbaaSqaaiaadkhaaeqaaaaakiaacIcacaWH1bGa aC41aiaahogacaGGPaWaaWbaaSqabeaacaaIYaaaaaGccaGLOaGaay zkaaaaaaaaaa@91D6@  

(1.16)

 

Figure 1: Results of a 2D animation of a magnetization cycle.  Red is the magnetic field, blue is the total energy including magnetic potential energy, and cyan is the kinetic energy.  While the magnetic field is high,  kinetic energy can be reduced by cooling gases outside the container.  When the magnetic field is reduced, the kinetic energy is reduced and the container is placed in thermal contact with the volume which is desired to be cooled.