Gas Centrifuge

Introduction

            The gas centrifuge provides a good framework for learning Newtonian and thermal physics of a large ensemble of particles (usually molecules or atoms).  In this document I will first give the standard macroscopic Boltzmann treatment of the radial distribution of particles of different mass.  Then I will document on a more microscopic basis the dynamics of how the radial distribution is achieved.  Finally I show the mathematics of the velocity changes when two particles of different mass and arbitrary velocities collide.

Figures

Figure 1: Diagram of the animation with heavy particle speed at Mach 1.8.  Note that the particle density is much more dense at the outer radius than the inner radius.  Also note that the radial probabilities and radial bin counts are reasonably well matched except for the expected variances due to only 600 particles and therefore an average of only 1 particles in each of the 40 bins polled.

 

Average Radial Particle Distribution in an Artificial Gravity

1. Standard Thermal Physics Treatment

            The Boltzmann probability law for particle height, in a gravity (or acceleration field), g, is:

P(h)=Nexp( mgh kT ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfacaGGOa GaamiAaiaacMcacqGH9aqpcaWGobGaciyzaiaacIhacaGGWbWaaeWa aeaadaWcaaqaaiabgkHiTiaad2gacaWGNbGaamiAaaqaaiaadUgaca WGubaaaaGaayjkaiaawMcaaaaa@44D4@                                                 (1)

where N is a normalization constant, m is the mass of the particle, k is Boltzmann's constant, h is the height of the particle with respect to the center of the gravitational field, and T is absolute temperature.  It will be adequate to model g as

g= ω 2 r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEgacqGH9a qpcqGHsislcqaHjpWDdaahaaWcbeqaaiaaikdaaaGccaWGYbaaaa@3C81@                                                                      (2)

where ω is the rate of rotation (radians per second) and r is somewhere between the inner radius, rI, and outer radius, rO .  Note that the sign of g is negative since the acceleration is toward the axis of the centrifuge.

Then equation 1 becomes

P(m,r)=Nexp( m ω 2 r 2 kT ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfacaGGOa GaamyBaiaacYcacaWGYbGaaiykaiabg2da9iaad6eaciGGLbGaaiiE aiaacchadaqadaqaamaalaaabaGaamyBaiabeM8a3naaCaaaleqaba GaaGOmaaaakiaadkhadaahaaWcbeqaaiaaikdaaaaakeaacaWGRbGa amivaaaaaiaawIcacaGLPaaaaaa@4864@                                            (3)

Equation 3 is the time-averaged particle density Vs mass and radius distribution in the annulus of the centrifuge. Note that the quantity in the numerator of the exponent of equation 3 is just mvt2(r) where vt(r) is the average tangential speed of the particle.  The speed of sound in an ideal gas is:

v s = γkT m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAhadaWgaa WcbaGaam4CaaqabaGccqGH9aqpdaGcaaqaamaalaaabaGaeq4SdCMa am4AaiaadsfaaeaacaWGTbaaaaWcbeaaaaa@3DA7@    

where γ is the ratio of specific heat at constant pressure to that at constant volume and is usually of order unity (for air γ=7/5).  Thus equation 3 can be converted to the simpler form:

            P(m,r)=Nexp( γ m v t 2 (r) m v s 2 )=Nexp( γ M m 2 (r) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfacaGGOa GaamyBaiaacYcacaWGYbGaaiykaiabg2da9iaad6eaciGGLbGaaiiE aiaacchadaqadaqaaiabeo7aNnaalaaabaGaamyBaiaadAhadaqhaa WcbaGaamiDaaqaaiaaikdaaaGccaGGOaGaamOCaiaacMcaaeaacaWG TbGaamODamaaDaaaleaacaWGZbaabaGaaGOmaaaaaaaakiaawIcaca GLPaaacqGH9aqpcaWGobGaciyzaiaacIhacaGGWbWaaeWaaeaacqaH ZoWzcaWGnbWaa0baaSqaaiaad2gaaeaacaaIYaaaaOGaaiikaiaadk hacaGGPaaacaGLOaGaayzkaaaaaa@5992@             (3a)

where Mm=vt/vs is the Mach number associated with the particular gas.  Note that the heavier gas will have a lower Mach number than the lighter gas.  Also note that the movement of the gas from being uniformly distributed to being higher density at the outer radius of the centrifuge doesn't become significant at Mach numbers less than about1.0.

 

2. Microscopic Treatment

a.  Providing Centripetal Acceleration

            Equations 3 are just formalisms and don't explain on a microscopic basis how this radial distribution is achieved and maintained.  It is clear that the centripetal force needed to keep individual particles rotating in an approximate circle about the axis of the centrifuge has to come from their collisions with the outer boundary.  Obviously the average rate of radial momentum transfer must be sufficient to provide the acceleration described in equation 2:

( d p r dt ) O =m ω 2 <r> MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaamaabaWaae WaaeaadaWcaaqaaiaadsgacaWGWbWaaSbaaSqaaiaadkhaaeqaaaGc baGaamizaiaadshaaaaacaGLOaGaayzkaaWaaSbaaSqaaiaad+eaae qaaaGccaGLPmIaayPkJaGaeyypa0JaeyOeI0IaamyBaiabeM8a3naa CaaaleqabaGaaGOmaaaakiabgYda8iaadkhacqGH+aGpaaa@47F3@                      (4)

where <r> represents the average value of r.  If wall collisions are separated in time by a representative time, τ, then we can say that for any one collision we must have:

Δ p O =m ω 2 <r>τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejaadc hadaWgaaWcbaGaam4taiaaykW7aeqaaOGaeyypa0JaamyBaiabeM8a 3naaCaaaleqabaGaaGOmaaaakiabgYda8iaadkhacqGH+aGpcqaHep aDaaa@445B@                                          (5)

and the difference in the radial speed changes is:

Δ v O = ω 2 <r>τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejaadA hadaWgaaWcbaGaam4taiaaykW7aeqaaOGaeyypa0JaeqyYdC3aaWba aSqabeaacaaIYaaaaOGaeyipaWJaamOCaiabg6da+iabes8a0baa@436F@                                              (6)

 

Equation 6 seems to be independent of the mass of the atoms but doesn't take into account the difference in thermal speeds between atoms of different mass.  Since the less massive atoms move faster, they will collide more times per second with the outer wall and gain more inward speed. 

            The number of wall collisions per second per wall unit area is

dn dt =n< v th > MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiaad6gaaeaacaWGKbGaamiDaaaacqGH9aqpcaWGUbGaeyipaWJa amODamaaBaaaleaacaWG0bGaamiAaaqabaGccqGH+aGpaaa@40D5@                                                   (7)

where n is the number of molecules per unit volume and <vth> is the average thermal velocity of the molecules.  In order to keep the entire volume, V, of the gas moving in a circle, the inward momentum supplied by the entire area, A, of the outer boundary is

dN dt =2nπ( r O + r I )L< v th > MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiaad6eaaeaacaWGKbGaamiDaaaacqGH9aqpcaaIYaGaamOBaiab ec8aWjaacIcacaWGYbWaaSbaaSqaaiaad+eaaeqaaOGaey4kaSIaam OCamaaBaaaleaacaWGjbaabeaakiaacMcacaWGmbGaeyipaWJaamOD amaaBaaaleaacaWG0bGaamiAaaqabaGccqGH+aGpaaa@4A36@  

Δp dN dt =nVm ω 2 <r>=πnL( r o 2 r I 2 )m ω 2 <r> MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejaadc hadaWcaaqaaiaadsgacaWGobaabaGaamizaiaadshaaaGaeyypa0Ja amOBaiaadAfacaWGTbGaeqyYdC3aaWbaaSqabeaacaaIYaaaaOGaey ipaWJaamOCaiabg6da+iabg2da9iabec8aWjaad6gacaWGmbGaaiik aiaadkhadaqhaaWcbaGaam4BaaqaaiaaikdaaaGccqGHsislcaWGYb Waa0baaSqaaiaadMeaaeaacaaIYaaaaOGaaiykaiaad2gacqaHjpWD daahaaWcbeqaaiaaikdaaaGccqGH8aapcaWGYbGaeyOpa4daaa@5895@

 

Δp= m ω 2 <r>( r O 2 r I 2 ) 2( r O + r I )< v th > = m ω 2 <r>( r O r I ) 2< v th > MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejaadc hacqGH9aqpdaWcaaqaaiaad2gacqaHjpWDdaahaaWcbeqaaiaaikda aaGccqGH8aapcaWGYbGaeyOpa4JaaiikaiaadkhadaqhaaWcbaGaam 4taaqaaiaaikdaaaGccqGHsislcaWGYbWaa0baaSqaaiaadMeaaeaa caaIYaaaaOGaaiykaaqaaiaaikdacaGGOaGaamOCamaaBaaaleaaca WGpbaabeaakiabgUcaRiaadkhadaWgaaWcbaGaamysaaqabaGccaGG PaGaeyipaWJaamODamaaBaaaleaacaWG0bGaamiAaaqabaGccqGH+a GpaaGaeyypa0ZaaSaaaeaacaWGTbGaeqyYdC3aaWbaaSqabeaacaaI YaaaaOGaeyipaWJaamOCaiabg6da+iaacIcacaWGYbWaa0baaSqaai aad+eaaeaaaaGccqGHsislcaWGYbWaa0baaSqaaiaadMeaaeaaaaGc caGGPaaabaGaaGOmaiabgYda8iaadAhadaWgaaWcbaGaamiDaiaadI gaaeqaaOGaeyOpa4daaaaa@67D1@                                (8)

where Δp is the average momentum provided per collision, rO is the outer radius and rI is the inner radius and <r> is the mean radial location of the molecules.  If the axial length of the centrifuge is L then:

A=2π r O L V=πL( r O 2 r I 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyqai abg2da9iaaikdacqaHapaCcaWGYbWaaSbaaSqaaiaad+eaaeqaaOGa amitaaqaaiaadAfacqGH9aqpcqaHapaCcaWGmbGaaiikaiaadkhada qhaaWcbaGaam4taaqaaiaaikdaaaGccqGHsislcaWGYbWaa0baaSqa aiaadMeaaeaacaaIYaaaaOGaaiykaaaaaa@4934@                                                (9)

When equations 7 and 9 are inserted into equation 8 we have:

2nΔpπ r O L< v th >=πnL( r O 2 r I 2 )m ω 2 <r> MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaikdacaWGUb GaeuiLdqKaamiCaiabec8aWjaadkhadaWgaaWcbaGaam4taaqabaGc caWGmbGaeyipaWJaamODamaaBaaaleaacaWG0bGaamiAaaqabaGccq GH+aGpcqGH9aqpcqaHapaCcaWGUbGaamitaiaacIcacaWGYbWaa0ba aSqaaiaad+eaaeaacaaIYaaaaOGaeyOeI0IaamOCamaaDaaaleaaca WGjbaabaGaaGOmaaaakiaacMcacaWGTbGaeqyYdC3aaWbaaSqabeaa caaIYaaaaOGaeyipaWJaamOCaiabg6da+aaa@569F@      (10)

Solving equation 10 for Δp we have:

Δp= ( r O 2 r I 2 )m ω 2 <r> 2 r O < v th > MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejaadc hacqGH9aqpdaWcaaqaaiaacIcacaWGYbWaa0baaSqaaiaad+eaaeaa caaIYaaaaOGaeyOeI0IaamOCamaaDaaaleaacaWGjbaabaGaaGOmaa aakiaacMcacaWGTbGaeqyYdC3aaWbaaSqabeaacaaIYaaaaOGaeyip aWJaamOCaiabg6da+aqaaiaaikdacaWGYbWaaSbaaSqaaiaad+eaae qaaOGaeyipaWJaamODamaaBaaaleaacaWG0bGaamiAaaqabaGccqGH +aGpaaaaaa@4FAD@                                 (11)

For low Mach numbers we can assume that <r>=(rO+rI)/2 and we know from thermal physics that

< v th >= kT m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgYda8iaadA hadaWgaaWcbaGaamiDaiaadIgaaeqaaOGaeyOpa4Jaeyypa0ZaaOaa aeaadaWcaaqaaiaadUgacaWGubaabaGaamyBaaaaaSqabaaaaa@3EFA@                                                   (12)

so that equation 11 becomes:

Δp= ( r O r I )m ω 2 <r > 2 2 r O < v th > = ( r O r I )m< v t > 2 2 r O < v th > MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejaadc hacqGH9aqpdaWcaaqaaiaacIcacaWGYbWaa0baaSqaaiaad+eaaeaa aaGccqGHsislcaWGYbWaa0baaSqaaiaadMeaaeaaaaGccaGGPaGaam yBaiabeM8a3naaCaaaleqabaGaaGOmaaaakiabgYda8iaadkhacqGH +aGpdaahaaWcbeqaaiaaikdaaaaakeaacaaIYaGaamOCamaaBaaale aacaWGpbaabeaakiabgYda8iaadAhadaWgaaWcbaGaamiDaiaadIga aeqaaOGaeyOpa4daaiabg2da9maalaaabaGaaiikaiaadkhadaqhaa WcbaGaam4taaqaaaaakiabgkHiTiaadkhadaqhaaWcbaGaamysaaqa aaaakiaacMcacaWGTbGaeyipaWJaamODamaaBaaaleaacaWG0baabe aakiabg6da+maaCaaaleqabaGaaGOmaaaaaOqaaiaaikdacaWGYbWa aSbaaSqaaiaad+eaaeqaaOGaeyipaWJaamODamaaBaaaleaacaWG0b GaamiAaaqabaGccqGH+aGpaaaaaa@647D@          (13)

where vt is the average tangential speed due to the centrifuge rotation and vth is the average thermal speed. Dividing both sides of equation 13 by m we get the inward speed change Δv needed at each outer wall collision to keep the gas moving in a circle:

            Δv= ( r O r I )< v t > 2 2 r O < v th > MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejaadA hacqGH9aqpdaWcaaqaaiaacIcacaWGYbWaa0baaSqaaiaad+eaaeaa aaGccqGHsislcaWGYbWaa0baaSqaaiaadMeaaeaaaaGccaGGPaGaey ipaWJaamODamaaBaaaleaacaWG0baabeaakiabg6da+maaCaaaleqa baGaaGOmaaaaaOqaaiaaikdacaWGYbWaaSbaaSqaaiaad+eaaeqaaO GaeyipaWJaamODamaaBaaaleaacaWG0bGaamiAaaqabaGccqGH+aGp aaaaaa@4CAF@                                       (14)

Note that equation 14 has units of speed as it must.

b. Bringing Particles up to the Tangential Speed of the Centrifuge

            The previous section computes the inward radial speed increments needed for each wall collision in order to keep the molecules moving in approximate circles about the centrifuge axis. This section will deal with accelerating the gas so that it finally has the same rotational speed as the centrifuge.  It's clear that inelastic collisions with the walls of the centrifuge are the only way that the gas can be accelerated.  In order for the entire gas to be accelerated tangentially at rate α=dω/dt, we must have a certain change in angular momentum, ΔP, at each collision.  The angular momentum equation is:

dP dt =Iα=M<r > 2 α=nπL( r O 2 r I 2 )m<r > 2 α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiaadcfaaeaacaWGKbGaamiDaaaacqGH9aqpcaWGjbGaeqySdeMa eyypa0JaamytaiabgYda8iaadkhacqGH+aGpdaahaaWcbeqaaiaaik daaaGccqaHXoqycqGH9aqpcaWGUbGaeqiWdaNaamitaiaacIcacaWG YbWaa0baaSqaaiaad+eaaeaacaaIYaaaaOGaeyOeI0IaamOCamaaDa aaleaacaWGjbaabaGaaGOmaaaakiaacMcacaWGTbGaeyipaWJaamOC aiabg6da+maaCaaaleqabaGaaGOmaaaakiabeg7aHbaa@5745@

where the moment of inertia, I, is implicitly defined as the total gas mass times the average radius squared.  Following the previous section we have the total number of wall collisions per second as:

dN dt =2nπ( r O + r I )L< v th > MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiaad6eaaeaacaWGKbGaamiDaaaacqGH9aqpcaaIYaGaamOBaiab ec8aWjaacIcacaWGYbWaaSbaaSqaaiaad+eaaeqaaOGaey4kaSIaam OCamaaBaaaleaacaWGjbaabeaakiaacMcacaWGmbGaeyipaWJaamOD amaaBaaaleaacaWG0bGaamiAaaqabaGccqGH+aGpaaa@4A36@  

dividing the two equations we obtain

dP dN = nπL( r O 2 r I 2 )m<r > 2 α 2nπL( r O + r I )< v th > = ( r O 2 r I 2 )m<r > 2 α 2( r O + r I )< v th > = ( r O r I )m<r > 2 α 2< v th > MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiaadcfaaeaacaWGKbGaamOtaaaacqGH9aqpdaWcaaqaaiaad6ga cqaHapaCcaWGmbGaaiikaiaadkhadaqhaaWcbaGaam4taaqaaiaaik daaaGccqGHsislcaWGYbWaa0baaSqaaiaadMeaaeaacaaIYaaaaOGa aiykaiaad2gacqGH8aapcaWGYbGaeyOpa4ZaaWbaaSqabeaacaaIYa aaaOGaeqySdegabaGaaGOmaiaad6gacqaHapaCcaWGmbGaaiikaiaa dkhadaWgaaWcbaGaam4taaqabaGccqGHRaWkcaWGYbWaaSbaaSqaai aadMeaaeqaaOGaaiykaiabgYda8iaadAhadaWgaaWcbaGaamiDaiaa dIgaaeqaaOGaeyOpa4daaiabg2da9maalaaabaGaaiikaiaadkhada qhaaWcbaGaam4taaqaaiaaikdaaaGccqGHsislcaWGYbWaa0baaSqa aiaadMeaaeaacaaIYaaaaOGaaiykaiaad2gacqGH8aapcaWGYbGaey Opa4ZaaWbaaSqabeaacaaIYaaaaOGaeqySdegabaGaaGOmaiaacIca caWGYbWaaSbaaSqaaiaad+eaaeqaaOGaey4kaSIaamOCamaaBaaale aacaWGjbaabeaakiaacMcacqGH8aapcaWG2bWaaSbaaSqaaiaadsha caWGObaabeaakiabg6da+aaacqGH9aqpdaWcaaqaaiaacIcacaWGYb Waa0baaSqaaiaad+eaaeaaaaGccqGHsislcaWGYbWaa0baaSqaaiaa dMeaaeaaaaGccaGGPaGaamyBaiabgYda8iaadkhacqGH+aGpdaahaa WcbeqaaiaaikdaaaGccqaHXoqyaeaacaaIYaGaeyipaWJaamODamaa BaaaleaacaWG0bGaamiAaaqabaGccqGH+aGpaaaaaa@8B15@

The tangential speed change for each collision can be computed from the following equation:

mΔvr=ΔPor: Δv= ΔP mr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyBai abfs5aejaadAhacaWGYbGaeyypa0JaeuiLdqKaamiuaiaaykW7caaM c8UaaGPaVlaaykW7caWGVbGaamOCaiaacQdaaeaacqqHuoarcaWG2b Gaeyypa0ZaaSaaaeaacqqHuoarcaWGqbaabaGaamyBaiaadkhaaaaa aaa@4DED@

so that

<Δ v t >= ( r O r I )<r > α 2< v th > MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgYda8iabfs 5aejaadAhadaWgaaWcbaGaamiDaaqabaGccqGH+aGpcqGH9aqpdaWc aaqaaiaacIcacaWGYbWaa0baaSqaaiaad+eaaeaaaaGccqGHsislca WGYbWaa0baaSqaaiaadMeaaeaaaaGccaGGPaGaeyipaWJaamOCaiab g6da+maaCaaaleqabaaaaOGaeqySdegabaGaaGOmaiabgYda8iaadA hadaWgaaWcbaGaamiDaiaadIgaaeqaaOGaeyOpa4daaaaa@4D99@

The way that the tangential speed is implemented in the program is to add the value

δ v t =ωr v t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaadA hadaWgaaWcbaGaamiDaaqabaGccqGH9aqpcqaHjpWDcaWGYbGaeyOe I0IaamODamaaBaaaleaacaWG0baabeaaaaa@4091@

to the tangential speed at each inner or outer wall collision.  Using this expression, the tangential speed of the atoms exponentially approaches the tangential speed of the outer wall of the centrifuge.

Particle-Particle Collisions of Different Mass or Velocity

            Here we will consider spherical particles which have the different masses, m1 and m2, and diameter, D.  The centers of the spheres will be labeled (x1,y1) and (x2,y2).  Upon collision, the momentum transferred between the spheres will always be along the unit vector:

u= [ ( x 1 x 2 ) x ^ +( y 1 y 2 ) y ^ ] r 12 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahwhacqGH9a qpdaWcaaqaamaadmaabaGaaiikaiaadIhadaWgaaWcbaGaaGymaaqa baGccqGHsislcaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaiykaiqahI hagaqcaiabgUcaRiaacIcacaWG5bWaaSbaaSqaaiaaigdaaeqaaOGa eyOeI0IaamyEamaaBaaaleaacaaIYaaabeaakiaacMcaceWH5bGbaK aaaiaawUfacaGLDbaaaeaacaWGYbWaaSbaaSqaaiaaigdacaaIYaaa beaaaaaaaa@4BD8@                                                     (19)

where

r 12 = ( x 1 x 2 ) 2 + ( y 1 y 2 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhadaWgaa WcbaGaaGymaiaaikdaaeqaaOGaeyypa0ZaaOaaaeaacaGGOaGaamiE amaaBaaaleaacaaIXaaabeaakiabgkHiTiaadIhadaWgaaWcbaGaaG OmaaqabaGccaGGPaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaiik aiaadMhadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWG5bWaaSbaaS qaaiaaikdaaeqaaOGaaiykamaaCaaaleqabaGaaGOmaaaaaeqaaaaa @48AB@

is the distance between centers.  Since the animation is illustrated in only 2 dimensions, we will simplify the analysis by doing it in 2 dimensions.  The vector analysis in 3 dimensions is entirely similar except all velocities and positions have a z component.

The expression for the final momenta in terms of the initial momenta is:

m 1 v 1 ' + m 2 v 2 ' = m 1 v 1 + m 2 v 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaWgaa WcbaGaaGymaaqabaGccaWH2bWaa0baaSqaaiaaigdaaeaacaGGNaaa aOGaey4kaSIaamyBamaaBaaaleaacaaIYaaabeaakiaahAhadaqhaa WcbaGaaGOmaaqaaiaacEcaaaGccqGH9aqpcaWGTbWaaSbaaSqaaiaa igdaaeqaaOGaaCODamaaDaaaleaacaaIXaaabaaaaOGaey4kaSIaam yBamaaBaaaleaacaaIYaaabeaakiaahAhadaqhaaWcbaGaaGOmaaqa aaaaaaa@4955@                                                                              (20)

where the apostrophe on the left side of the equations indicates the final velocities.  We know that the energies are conserved so

m 1 v 1 '2 + m 2 v 2 '2 2 = m 1 v 1 2 + m 1 v 2 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam yBamaaBaaaleaacaaIXaaabeaakiaadAhadaqhaaWcbaGaaGymaaqa aiaacEcacaaIYaaaaOGaey4kaSIaamyBamaaBaaaleaacaaIYaaabe aakiaadAhadaqhaaWcbaGaaGOmaaqaaiaacEcacaaIYaaaaaGcbaGa aGOmaaaacqGH9aqpdaWcaaqaaiaad2gadaWgaaWcbaGaaGymaaqaba GccaWG2bWaa0baaSqaaiaaigdaaeaacaaIYaaaaOGaey4kaSIaamyB amaaBaaaleaacaaIXaaabeaakiaadAhadaqhaaWcbaGaaGOmaaqaai aaikdaaaaakeaacaaIYaaaaaaa@4DD6@                                                                             (21)

The directions of the change in momenta are along the vector of centers, u, and the values of the changes of momenta must be equal and opposite.

m 1 Δ v 1 =Mδvu= m 2 Δ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaWgaa WcbaGaaGymaaqabaGccaWHuoGaaCODamaaBaaaleaacaaIXaaabeaa kiabg2da9iaad2eacqaH0oazcaWG2bGaaCyDaiabg2da9iabgkHiTi aad2gadaWgaaWcbaGaaGOmaaqabaGccaWHuoGaaCODamaaBaaaleaa caaIYaaabeaaaaa@4732@                                                                     (22)

so that

m 1 v 1 ' = m 1 v 1 +Mδvu m 2 v 2 ' = m 2 v 2 Mδvu MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyBam aaBaaaleaacaaIXaaabeaakiaahAhadaqhaaWcbaGaaGymaaqaaiaa cEcaaaGccqGH9aqpcaWGTbWaaSbaaSqaaiaaigdaaeqaaOGaaCODam aaDaaaleaacaaIXaaabaaaaOGaey4kaSIaamytaiabes7aKjaadAha caWH1baabaGaamyBamaaBaaaleaacaaIYaaabeaakiaahAhadaqhaa WcbaGaaGOmaaqaaiaacEcaaaGccqGH9aqpcaWGTbWaaSbaaSqaaiaa ikdaaeqaaOGaaCODamaaDaaaleaacaaIYaaabaaaaOGaeyOeI0Iaam ytaiabes7aKjaadAhacaWH1baaaaa@5357@                                                                           (23)

Now we can use equation 23 in equation 21 to solve for the value of Mδv.

  ( m 1 v 1 +Mδvu)( m 1 v 1 +Mδvu) 2 m 1 + ( m 2 v 2 Mδvu)( m 2 v 2 Mδvu) 2 m 2 = m 1 v 1 2 + m 2 v 2 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaai ikaiaad2gadaWgaaWcbaGaaGymaaqabaGccaWH2bWaa0baaSqaaiaa igdaaeaaaaGccqGHRaWkcaWGnbGaeqiTdqMaamODaiaahwhacaGGPa GaeyOiGCRaaiikaiaad2gadaWgaaWcbaGaaGymaaqabaGccaWH2bWa a0baaSqaaiaaigdaaeaaaaGccqGHRaWkcaWGnbGaeqiTdqMaamODai aahwhacaGGPaaabaGaaGOmaiaad2gadaWgaaWcbaGaaGymaaqabaaa aOGaey4kaSYaaSaaaeaacaGGOaGaamyBamaaBaaaleaacaaIYaaabe aakiaahAhadaqhaaWcbaGaaGOmaaqaaaaakiabgkHiTiaad2eacqaH 0oazcaWG2bGaaCyDaiaacMcacqGHIaYTcaGGOaGaamyBamaaBaaale aacaaIYaaabeaakiaahAhadaqhaaWcbaGaaGOmaaqaaaaakiabgkHi Tiaad2eacqaH0oazcaWG2bGaaCyDaiaacMcaaeaacaaIYaGaamyBam aaBaaaleaacaaIYaaabeaaaaGccqGH9aqpdaWcaaqaaiaad2gadaWg aaWcbaGaaGymaaqabaGccaWG2bWaa0baaSqaaiaaigdaaeaacaaIYa aaaOGaey4kaSIaamyBamaaBaaaleaacaaIYaaabeaakiaadAhadaqh aaWcbaGaaGOmaaqaaiaaikdaaaaakeaacaaIYaaaaaaa@751A@                                     (24)

where the large dot stands for the dot product and equation 24 simplifies to:

(2 m 1 Mδvu v 1 + M 2 δ v 2 ) 2 m 1 + (2 m 2 Mδvu v 2 + M 2 δ v 2 ) 2 m 2 =0 M 2 δ v 2 ( 1 m 1 + 1 m 2 )+2δvM(u v 1 u v 2 )=0 Mδv= 2 m 1 m 2 u( v 2 v 1 ) m 1 + m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaWaaSaaae aacaGGOaGaaGOmaiaad2gadaWgaaWcbaGaaGymaaqabaGccaWGnbGa eqiTdqMaamODaiaahwhacqGHIaYTcaWH2bWaa0baaSqaaiaaigdaae aaaaGccqGHRaWkcaWGnbWaaWbaaSqabeaacaaIYaaaaOGaeqiTdqMa amODamaaCaaaleqabaGaaGOmaaaakiaacMcaaeaacaaIYaGaamyBam aaBaaaleaacaaIXaaabeaaaaGccqGHRaWkdaWcaaqaaiaacIcacqGH sislcaaIYaGaamyBamaaBaaaleaacaaIYaaabeaakiaad2eacqaH0o azcaWG2bGaaCyDaiabgkci3kaahAhadaqhaaWcbaGaaGOmaaqaaaaa kiabgUcaRiaad2eadaahaaWcbeqaaiaaikdaaaGccqaH0oazcaWG2b WaaWbaaSqabeaacaaIYaaaaOGaaiykaaqaaiaaikdacaWGTbWaaSba aSqaaiaaikdaaeqaaaaakiabg2da9iaaicdaaeaacaWGnbWaaWbaaS qabeaacaaIYaaaaOGaeqiTdqMaamODamaaCaaaleqabaGaaGOmaaaa kmaabmaabaWaaSaaaeaacaaIXaaabaGaamyBamaaBaaaleaacaaIXa aabeaaaaGccqGHRaWkdaWcaaqaaiaaigdaaeaacaWGTbWaaSbaaSqa aiaaikdaaeqaaaaaaOGaayjkaiaawMcaaiabgUcaRiaaikdacqaH0o azcaWG2bGaamytaiaacIcacaWH1bGaeyOiGCRaaCODamaaDaaaleaa caaIXaaabaaaaOGaeyOeI0IaaCyDaiabgkci3kaahAhadaqhaaWcba GaaGOmaaqaaaaakiaacMcacqGH9aqpcaaIWaaabaGaamytaiabes7a KjaadAhacqGH9aqpdaWcaaqaaiaaikdacaWGTbWaaSbaaSqaaiaaig daaeqaaOGaamyBamaaBaaaleaacaaIYaaabeaakiaahwhacqGHIaYT caGGOaGaaCODamaaDaaaleaacaaIYaaabaaaaOGaeyOeI0IaaCODam aaDaaaleaacaaIXaaabaaaaOGaaiykaaqaaiaad2gadaWgaaWcbaGa aGymaaqabaGccqGHRaWkcaWGTbWaaSbaaSqaaiaaikdaaeqaaaaaaa aa@9888@                                       (25)

where we make the identification:

M= 2 m 1 m 2 m 1 + m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eacqGH9a qpdaWcaaqaaiaaikdacaWGTbWaaSbaaSqaaiaaigdaaeqaaOGaamyB amaaBaaaleaacaaIYaaabeaaaOqaaiaad2gadaWgaaWcbaGaaGymaa qabaGccqGHRaWkcaWGTbWaaSbaaSqaaiaaikdaaeqaaaaaaaa@40F5@

and M is known as the "reduced mass".

Equations 23 and 25 are a complete solution for the final momenta. The final velocities are computed by dividing both sides of equations 23 by their respective masses:

  v 1 ' = v 1 + 2 m 2 m 1 + m 2 u( v 2 v 1 )u v 2 ' = v 2 2 m 1 m 1 + m 2 u( v 2 v 1 )u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaaCODam aaDaaaleaacaaIXaaabaGaai4jaaaakiabg2da9iaahAhadaqhaaWc baGaaGymaaqaaaaakiabgUcaRmaalaaabaGaaGOmaiaad2gadaWgaa WcbaGaaGOmaaqabaaakeaacaWGTbWaaSbaaSqaaiaaigdaaeqaaOGa ey4kaSIaamyBamaaBaaaleaacaaIYaaabeaaaaGccaWH1bGaeyOiGC RaaiikaiaahAhadaqhaaWcbaGaaGOmaaqaaaaakiabgkHiTiaahAha daqhaaWcbaGaaGymaaqaaaaakiaacMcacaWH1baabaGaaCODamaaDa aaleaacaaIYaaabaGaai4jaaaakiabg2da9iaahAhadaqhaaWcbaGa aGOmaaqaaaaakiabgkHiTmaalaaabaGaaGOmaiaad2gadaWgaaWcba GaaGymaaqabaaakeaacaWGTbWaaSbaaSqaaiaaigdaaeqaaOGaey4k aSIaamyBamaaBaaaleaacaaIYaaabeaaaaGccaWH1bGaeyOiGCRaai ikaiaahAhadaqhaaWcbaGaaGOmaaqaaaaakiabgkHiTiaahAhadaqh aaWcbaGaaGymaaqaaaaakiaacMcacaWH1baaaaa@64EE@

Suppose m2>m1.  Then we see that the magnitude of the speed added to molecule 1 will be larger than the magnitude of  the speed removed from molecule 2.  We can easily see from equation 24 that, even though the averages of the dot products are zero,  that the collision results in an increased kinetic energy for molecule 1 and a decreased kinetic energy for molecule 2 because of the mass term in the denominators.

( m 1 v 1 +Mδvu)( m 1 v 1 +Mδvu) 2 m 1 + ( m 2 v 2 Mδvu)( m 2 v 2 Mδvu) 2 m 2 = m 1 v 1 2 + m 2 v 2 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaai ikaiaad2gadaWgaaWcbaGaaGymaaqabaGccaWH2bWaa0baaSqaaiaa igdaaeaaaaGccqGHRaWkcaWGnbGaeqiTdqMaamODaiaahwhacaGGPa GaeyOiGCRaaiikaiaad2gadaWgaaWcbaGaaGymaaqabaGccaWH2bWa a0baaSqaaiaaigdaaeaaaaGccqGHRaWkcaWGnbGaeqiTdqMaamODai aahwhacaGGPaaabaGaaGOmaiaad2gadaWgaaWcbaGaaGymaaqabaaa aOGaey4kaSYaaSaaaeaacaGGOaGaamyBamaaBaaaleaacaaIYaaabe aakiaahAhadaqhaaWcbaGaaGOmaaqaaaaakiabgkHiTiaad2eacqaH 0oazcaWG2bGaaCyDaiaacMcacqGHIaYTcaGGOaGaamyBamaaBaaale aacaaIYaaabeaakiaahAhadaqhaaWcbaGaaGOmaaqaaaaakiabgkHi Tiaad2eacqaH0oazcaWG2bGaaCyDaiaacMcaaeaacaaIYaGaamyBam aaBaaaleaacaaIYaaabeaaaaGccqGH9aqpdaWcaaqaaiaad2gadaWg aaWcbaGaaGymaaqabaGccaWG2bWaa0baaSqaaiaaigdaaeaacaaIYa aaaOGaey4kaSIaamyBamaaBaaaleaacaaIYaaabeaakiaadAhadaqh aaWcbaGaaGOmaaqaaiaaikdaaaaakeaacaaIYaaaaaaa@751A@

If the initial speeds are the same then the only difference between E1 and E2 is due to the M2 term in the kinetic energies.

Δ E 1 Δ E 2 = M 2 δ v 2 ( 1 2 m 1 1 2 m 2 )>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejaadw eadaWgaaWcbaGaaGymaaqabaGccqGHsislcqqHuoarcaWGfbWaaSba aSqaaiaaikdaaeqaaOGaeyypa0JaamytamaaCaaaleqabaGaaGOmaa aakiabes7aKjaadAhadaahaaWcbeqaaiaaikdaaaGcdaqadaqaamaa laaabaGaaGymaaqaaiaaikdacaWGTbWaaSbaaSqaaiaaigdaaeqaaa aakiabgkHiTmaalaaabaGaaGymaaqaaiaaikdacaWGTbWaaSbaaSqa aiaaikdaaeqaaaaaaOGaayjkaiaawMcaaiabg6da+iaaicdaaaa@4E86@

If the speeds are different, say v2>v1, but the masses are the same, then the difference in kinetic energies is due to the Mm term in the kinetic energies:

Δ E 1 Δ E 2 = m 2 [u( v 2 v 1 )u( v 1 + v 2 )]= m 2 [ (u v 2 ) 2 (u v 1 ) 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejaadw eadaWgaaWcbaGaaGymaaqabaGccqGHsislcqqHuoarcaWGfbWaaSba aSqaaiaaikdaaeqaaOGaeyypa0ZaaSaaaeaacaWGTbaabaGaaGOmaa aacaGGBbGaaCyDaiabgkci3kaacIcacaWH2bWaaSbaaSqaaiaaikda aeqaaOGaeyOeI0IaaCODamaaBaaaleaacaaIXaaabeaakiaacMcaca WH1bGaeyOiGCRaaiikaiaahAhadaWgaaWcbaGaaCymaaqabaGccqGH RaWkcaWH2bWaaSbaaSqaaiaahkdaaeqaaOGaaiykaiaac2facqGH9a qpdaWcaaqaaiaad2gaaeaacaaIYaaaaiaacUfacaGGOaGaaCyDaiab gkci3kaahAhadaWgaaWcbaGaaGOmaaqabaGccaGGPaWaaWbaaSqabe aacaaIYaaaaOGaeyOeI0IaaiikaiaahwhacqGHIaYTcaWH2bWaaSba aSqaaiaaigdaaeqaaOGaaiykamaaCaaaleqabaGaaGOmaaaakiaac2 faaaa@65D6@

The above equation can be re-written:

Δ E 1 Δ E 2 = m 2 [ v 2 2 cos 2 ( θ u2 ) v 1 2 cos 2 ( θ u1 )] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejaadw eadaWgaaWcbaGaaGymaaqabaGccqGHsislcqqHuoarcaWGfbWaaSba aSqaaiaaikdaaeqaaOGaeyypa0ZaaSaaaeaacaWGTbaabaGaaGOmaa aacaGGBbGaamODamaaDaaaleaacaaIYaaabaGaaGOmaaaakiGacoga caGGVbGaai4CamaaCaaaleqabaGaaGOmaaaakiaacIcacqaH4oqCda WgaaWcbaGaamyDaiaaikdaaeqaaOGaaiykaiabgkHiTiaadAhadaqh aaWcbaGaaGymaaqaaiaaikdaaaGcciGGJbGaai4Baiaacohadaahaa WcbeqaaiaaikdaaaGccaGGOaGaeqiUde3aaSbaaSqaaiaadwhacaaI XaaabeaakiaacMcacaGGDbaaaa@5960@

where

cos( θ ui )= u v i v i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGacogacaGGVb Gaai4CaiaacIcacqaH4oqCdaWgaaWcbaGaamyDaiaadMgaaeqaaOGa aiykaiabg2da9maalaaabaGaaCyDaiabgkci3kaahAhadaWgaaWcba GaaCyAaaqabaaakeaacaWG2bWaaSbaaSqaaiaadMgaaeqaaaaaaaa@45C0@

is the cosine of the angle between vi and u.  The average value over all possible angles between vi and u of the cosine squared terms is 1/2 so we can write

<Δ E 1 Δ E 2 >= m 4 [ v 2 2 v 1 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgYda8iabfs 5aejaadweadaWgaaWcbaGaaGymaaqabaGccqGHsislcqqHuoarcaWG fbWaaSbaaSqaaiaaikdaaeqaaOGaeyOpa4Jaeyypa0ZaaSaaaeaaca WGTbaabaGaaGinaaaacaGGBbGaamODamaaDaaaleaacaaIYaaabaGa aGOmaaaakiabgkHiTiaadAhadaqhaaWcbaGaaGymaaqaaiaaikdaaa GccaGGDbaaaa@49ED@

 

Therefore, averaged over all possible angles between u and v, the change of kinetic energy for particle 1 will be positive since v2>v1.

This degradation of the energy of the larger mass or higher speed atoms and/or speed leads to what is called the zeroth law of thermodynamics-all energies tend to be become equalized because of collisions.  An example of this would be two gases of different molecular masses as well as different temperatures injected into an insulated box.  The gas temperatures (or average energies) will equalize leaving the average speed of the gas with more massive molecules less than that of the gas with less massive molecules but the energies will tend to become equal due to the energy Vs velocity law we just proved.

           

( m 1 v 1 +Mδvu)( m 1 v 1 +Mδvu) 2 m 1 + ( m 2 v 2 Mδvu)( m 2 v 2 Mδvu) 2 m 2 = m 1 v 1 2 + m 2 v 2 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaai ikaiaad2gadaWgaaWcbaGaaGymaaqabaGccaWH2bWaa0baaSqaaiaa igdaaeaaaaGccqGHRaWkcaWGnbGaeqiTdqMaamODaiaahwhacaGGPa GaeyOiGCRaaiikaiaad2gadaWgaaWcbaGaaGymaaqabaGccaWH2bWa a0baaSqaaiaaigdaaeaaaaGccqGHRaWkcaWGnbGaeqiTdqMaamODai aahwhacaGGPaaabaGaaGOmaiaad2gadaWgaaWcbaGaaGymaaqabaaa aOGaey4kaSYaaSaaaeaacaGGOaGaamyBamaaBaaaleaacaaIYaaabe aakiaahAhadaqhaaWcbaGaaGOmaaqaaaaakiabgkHiTiaad2eacqaH 0oazcaWG2bGaaCyDaiaacMcacqGHIaYTcaGGOaGaamyBamaaBaaale aacaaIYaaabeaakiaahAhadaqhaaWcbaGaaGOmaaqaaaaakiabgkHi Tiaad2eacqaH0oazcaWG2bGaaCyDaiaacMcaaeaacaaIYaGaamyBam aaBaaaleaacaaIYaaabeaaaaGccqGH9aqpdaWcaaqaaiaad2gadaWg aaWcbaGaaGymaaqabaGccaWG2bWaa0baaSqaaiaaigdaaeaacaaIYa aaaOGaey4kaSIaamyBamaaBaaaleaacaaIYaaabeaakiaadAhadaqh aaWcbaGaaGOmaaqaaiaaikdaaaaakeaacaaIYaaaaaaa@751A@

Let's compute the E1 and E2 for the general case where both m and v are different.

E 1 '= ( m 1 v 1 +Mδvu)( m 1 v 1 +Mδvu) 2 m 1 = E 1 +Mδv(u v 1 )+ M 2 δ v 2 2 m 1 E 2 '= ( m 2 v 2 Mδvu)( m 2 v 2 Mδvu) 2 m 2 = E 2 Mδv(u v 2 )+ M 2 δ v 2 2 m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyram aaBaaaleaacaaIXaaabeaakiaacEcacqGH9aqpdaWcaaqaaiaacIca caWGTbWaaSbaaSqaaiaaigdaaeqaaOGaaCODamaaDaaaleaacaaIXa aabaaaaOGaey4kaSIaamytaiabes7aKjaadAhacaWH1bGaaiykaiab gkci3kaacIcacaWGTbWaaSbaaSqaaiaaigdaaeqaaOGaaCODamaaDa aaleaacaaIXaaabaaaaOGaey4kaSIaamytaiabes7aKjaadAhacaWH 1bGaaiykaaqaaiaaikdacaWGTbWaaSbaaSqaaiaaigdaaeqaaaaaki abg2da9iaadweadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGnbGa eqiTdqMaamODaiaacIcacaWH1bGaeyOiGCRaaCODamaaBaaaleaaca WHXaaabeaakiaacMcacqGHRaWkdaWcaaqaaiaad2eadaahaaWcbeqa aiaaikdaaaGccqaH0oazcaWG2bWaaWbaaSqabeaacaaIYaaaaaGcba GaaGOmaiaad2gadaWgaaWcbaGaaGymaaqabaaaaaGcbaGaamyramaa BaaaleaacaaIYaaabeaakiaacEcacqGH9aqpdaWcaaqaaiaacIcaca WGTbWaaSbaaSqaaiaaikdaaeqaaOGaaCODamaaDaaaleaacaaIYaaa baaaaOGaeyOeI0Iaamytaiabes7aKjaadAhacaWH1bGaaiykaiabgk ci3kaacIcacaWGTbWaaSbaaSqaaiaaikdaaeqaaOGaaCODamaaDaaa leaacaaIYaaabaaaaOGaeyOeI0Iaamytaiabes7aKjaadAhacaWH1b GaaiykaaqaaiaaikdacaWGTbWaaSbaaSqaaiaaikdaaeqaaaaakiab g2da9iaadweadaWgaaWcbaGaaGOmaaqabaGccqGHsislcaWGnbGaeq iTdqMaamODaiaacIcacaWH1bGaeyOiGCRaaCODamaaBaaaleaacaaI YaaabeaakiaacMcacqGHRaWkdaWcaaqaaiaad2eadaahaaWcbeqaai aaikdaaaGccqaH0oazcaWG2bWaaWbaaSqabeaacaaIYaaaaaGcbaGa aGOmaiaad2gadaWgaaWcbaGaaGOmaaqabaaaaaaaaa@9AE1@

Inserting the expression for Mδv we have:

E 1 '= E 1 +Mu( v 2 v 1 )(u v 1 )+ M 2 δ v 2 2 m 1 = E 1 +M[(u v 2 )(u v 1 ) (u v 1 ) 2 ]+ M 2 δ v 2 2 m 1 E 2 '= E 2 Mu( v 2 v 1 )(u v 2 )+ M 2 δ v 2 2 m 2 = E 2 M[ (u v 2 ) 2 (u v 1 )(u v 2 )]+ M 2 δ v 2 2 m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyram aaBaaaleaacaaIXaaabeaakiaacEcacqGH9aqpcaWGfbWaaSbaaSqa aiaaigdaaeqaaOGaey4kaSIaamytaiaahwhacqGHIaYTcaGGOaGaaC ODamaaDaaaleaacaaIYaaabaaaaOGaeyOeI0IaaCODamaaDaaaleaa caaIXaaabaaaaOGaaiykaiaacIcacaWH1bGaeyOiGCRaaCODamaaBa aaleaacaWHXaaabeaakiaacMcacqGHRaWkdaWcaaqaaiaad2eadaah aaWcbeqaaiaaikdaaaGccqaH0oazcaWG2bWaaWbaaSqabeaacaaIYa aaaaGcbaGaaGOmaiaad2gadaWgaaWcbaGaaGymaaqabaaaaOGaeyyp a0JaamyramaaBaaaleaacaaIXaaabeaakiabgUcaRiaad2eacaGGBb GaaiikaiaahwhacqGHIaYTcaWH2bWaa0baaSqaaiaaikdaaeaaaaGc caGGPaGaaiikaiaahwhacqGHIaYTcaWH2bWaa0baaSqaaiaaigdaae aaaaGccaGGPaGaeyOeI0IaaiikaiaahwhacqGHIaYTcaWH2bWaa0ba aSqaaiaaigdaaeaaaaGccaGGPaWaaWbaaSqabeaacaaIYaaaaOGaai yxaiabgUcaRmaalaaabaGaamytamaaCaaaleqabaGaaGOmaaaakiab es7aKjaadAhadaahaaWcbeqaaiaaikdaaaaakeaacaaIYaGaamyBam aaBaaaleaacaaIXaaabeaaaaaakeaacaWGfbWaaSbaaSqaaiaaikda aeqaaOGaai4jaiabg2da9iaadweadaWgaaWcbaGaaGOmaaqabaGccq GHsislcaWGnbGaaCyDaiabgkci3kaacIcacaWH2bWaa0baaSqaaiaa ikdaaeaaaaGccqGHsislcaWH2bWaa0baaSqaaiaaigdaaeaaaaGcca GGPaGaaiikaiaahwhacqGHIaYTcaWH2bWaaSbaaSqaaiaaikdaaeqa aOGaaiykaiabgUcaRmaalaaabaGaamytamaaCaaaleqabaGaaGOmaa aakiabes7aKjaadAhadaahaaWcbeqaaiaaikdaaaaakeaacaaIYaGa amyBamaaBaaaleaacaaIYaaabeaaaaGccqGH9aqpcaWGfbWaaSbaaS qaaiaaikdaaeqaaOGaeyOeI0IaamytaiaacUfacaGGOaGaaCyDaiab gkci3kaahAhadaqhaaWcbaGaaGOmaaqaaaaakiaacMcadaahaaWcbe qaaiaaikdaaaGccqGHsislcaGGOaGaaCyDaiabgkci3kaahAhadaqh aaWcbaGaaGymaaqaaaaakiaacMcacaGGOaGaaCyDaiabgkci3kaahA hadaqhaaWcbaGaaGOmaaqaaaaakiaacMcacaGGDbGaey4kaSYaaSaa aeaacaWGnbWaaWbaaSqabeaacaaIYaaaaOGaeqiTdqMaamODamaaCa aaleqabaGaaGOmaaaaaOqaaiaaikdacaWGTbWaaSbaaSqaaiaaikda aeqaaaaaaaaa@B748@

E 1 '= E 1 +M[(u v ^ 2 )(u v ^ 1 ) v 1 v 2 (u v ^ 1 ) 2 v 1 2 ]+ M 2 [ v 2 2 (u v ^ 2 ) 2 2 v 1 v 2 (u v ^ 2 )(u v ^ 2 )+ v 1 2 (u v ^ 2 ) 2 ] 2 m 1 E 2 '= E 2 M[ (u v ^ 2 ) 2 v 2 2 (u v ^ 1 )(u v ^ 2 ) v 1 v 2 ]+ M 2 [ v 2 2 (u v ^ 2 ) 2 2 v 1 v 2 (u v ^ 2 )(u v ^ 2 )+ v 1 2 (u v ^ 1 ) 2 ] 2 m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyram aaBaaaleaacaaIXaaabeaakiaacEcacqGH9aqpcaWGfbWaaSbaaSqa aiaaigdaaeqaaOGaey4kaSIaamytaiaacUfacaGGOaGaaCyDaiabgk ci3kqahAhagaqcamaaDaaaleaacaaIYaaabaaaaOGaaiykaiaacIca caWH1bGaeyOiGCRabCODayaajaWaa0baaSqaaiaaigdaaeaaaaGcca GGPaGaamODamaaBaaaleaacaaIXaaabeaakiaadAhadaWgaaWcbaGa aGOmaaqabaGccqGHsislcaGGOaGaaCyDaiabgkci3kqahAhagaqcam aaDaaaleaacaaIXaaabaaaaOGaaiykamaaCaaaleqabaGaaGOmaaaa kiaadAhadaqhaaWcbaGaaGymaaqaaiaaikdaaaGccaGGDbGaey4kaS YaaSaaaeaacaWGnbWaaWbaaSqabeaacaaIYaaaaOGaai4waiaadAha daqhaaWcbaGaaGOmaaqaaiaaikdaaaGccaGGOaGaaCyDaiabgkci3k qahAhagaqcamaaDaaaleaacaaIYaaabaaaaOGaaiykamaaCaaaleqa baGaaGOmaaaakiabgkHiTiaaikdacaWG2bWaaSbaaSqaaiaaigdaae qaaOGaamODamaaBaaaleaacaaIYaaabeaakiaacIcacaWH1bGaeyOi GCRabCODayaajaWaa0baaSqaaiaaikdaaeaaaaGccaGGPaGaaiikai aahwhacqGHIaYTceWH2bGbaKaadaqhaaWcbaGaaGOmaaqaaaaakiaa cMcacqGHRaWkcaWG2bWaa0baaSqaaiaaigdaaeaacaaIYaaaaOGaai ikaiaahwhacqGHIaYTceWH2bGbaKaadaqhaaWcbaGaaGOmaaqaaaaa kiaacMcadaahaaWcbeqaaiaaikdaaaGccaGGDbaabaGaaGOmaiaad2 gadaWgaaWcbaGaaGymaaqabaaaaaGcbaGaamyramaaBaaaleaacaaI YaaabeaakiaacEcacqGH9aqpcaWGfbWaaSbaaSqaaiaaikdaaeqaaO GaeyOeI0IaamytaiaacUfacaGGOaGaaCyDaiabgkci3kqahAhagaqc amaaDaaaleaacaaIYaaabaaaaOGaaiykamaaCaaaleqabaGaaGOmaa aakiaadAhadaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccqGHsislcaGG OaGaaCyDaiabgkci3kqahAhagaqcamaaDaaaleaacaaIXaaabaaaaO GaaiykaiaacIcacaWH1bGaeyOiGCRabCODayaajaWaa0baaSqaaiaa ikdaaeaaaaGccaGGPaGaamODamaaBaaaleaacaaIXaaabeaakiaadA hadaWgaaWcbaGaaGOmaaqabaGccaGGDbGaey4kaSYaaSaaaeaacaWG nbWaaWbaaSqabeaacaaIYaaaaOGaai4waiaadAhadaqhaaWcbaGaaG OmaaqaaiaaikdaaaGccaGGOaGaaCyDaiabgkci3kqahAhagaqcamaa DaaaleaacaaIYaaabaaaaOGaaiykamaaCaaaleqabaGaaGOmaaaaki abgkHiTiaaikdacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaamODamaa BaaaleaacaaIYaaabeaakiaacIcacaWH1bGaeyOiGCRabCODayaaja Waa0baaSqaaiaaikdaaeaaaaGccaGGPaGaaiikaiaahwhacqGHIaYT ceWH2bGbaKaadaqhaaWcbaGaaGOmaaqaaaaakiaacMcacqGHRaWkca WG2bWaa0baaSqaaiaaigdaaeaacaaIYaaaaOGaaiikaiaahwhacqGH IaYTceWH2bGbaKaadaqhaaWcbaGaaGymaaqaaaaakiaacMcadaahaa WcbeqaaiaaikdaaaGccaGGDbaabaGaaGOmaiaad2gadaWgaaWcbaGa aGOmaaqabaaaaaaaaa@D377@

 

            It's clear that, over many collisions, the (u.v1)(u.v2) terms average to zero.   

            Since the animation is digital we can expect that most often the collision condition will be realized when the distance between the centers of the two spheres,r12, is less than D. To handle this I will increase the distance between the centers by the difference

  dr=D r 12 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgacaWGYb Gaeyypa0JaamiraiabgkHiTiaadkhadaWgaaWcbaGaaGymaiaaikda aeqaaaaa@3D21@

by shifting each sphere in opposite directions by dr/2 along u.  Thus we will move the centers by the vectors:

δ r 1,2 =± dr 2 u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaadk hadaWgaaWcbaGaaGymaiaacYcacaaIYaaabeaakiabg2da9iabggla XoaalaaabaGaamizaiaadkhaaeaacaaIYaaaaiaahwhaaaa@4182@                                                                                                     (26)