Gas Compression through A Nozzle

Introduction

This animation shows the periodic compression and expansion of a gas by a moving piston. The original idea here was to show how a wind is generated by a gradient in atomic density.  An extreme gradient is generated here by having a nozzle at the right side of the cylinder and having an almost perfect vacuum beyond the nozzle.

 

In order to show significant results, we will permit piston speeds that are approximately equal to the average thermal speeds of the atoms. This will show how interesting atomic density distributions can build up on the face of the advancing piston.  What is interesting is that we can get reasonably good agreement for energy, force on piston, and average atomic speed between the hard sphere kinetic calculations and first principles results derived from classical gas pressure theory analysis.  This agreement exists even though the gas is never in a quasi-static state.

Figures

 

Figure 1: Cylinder and Piston filled with 400 atoms.   The total atom energy has increased from about 3500 to 20036 units.  By viewing the red histogram, one can see that the density of the atoms to the right of the right-going piston is highest.  This is because piston speed slightly exceeds average atomic speed so the atoms can't diffuse away fast enough. The smooth blue curve is the first-principles result for the total atom energy and the smooth green curve is the first principles result for the force on the piston.  The orange curves give the average velocity in the horizontal direction.

Calculation of Energy during adiabatic compression

            Adiabatic compression means that no heat flows into the system under observation during that compression.  Atoms do gain kinetic energy (the temperature increases) during adiabatic compression because of the mechanical energy provided by the moving piston.  The reason is that a atom with x velocity component -vx (where vx>0 for the time being) that collides with the front side of a piston moving in the x direction at speed vp>0 rebounds with an x component of speed vx+vp i.e.

 

v x ' =( v x )+ v p = v x + v p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAhadaqhaa WcbaGaamiEaaqaaiaacEcaaaGccqGH9aqpcqGHsislcaGGOaGaeyOe I0IaamODamaaBaaaleaacaWG4baabeaakiaacMcacqGHRaWkcaWG2b WaaSbaaSqaaiaadchacaaMc8oabeaakiabg2da9iaadAhadaWgaaWc baGaamiEaaqabaGccqGHRaWkcaWG2bWaaSbaaSqaaiaadchaaeqaaa aa@49F1@

and therefore the colliding atom gains energy. 

            We will use the term "front side" to describe the face of the piston whose outward normal is parallel with vP and the term "back side" to  describe the face of the piston whose outward normal is anti-parallel with vP. 

            One might object that the opposite speed change happens when an atom hits the back side of the piston and that is absolutely correct.  However, as the animation shows, there is often a much higher density atoms on the front side of the piston than the back side and therefore there is a net energy gain per cycle.

            In the following, we will consider only the motion of the piston in the positive x direction.  By symmetry, the results for energy transfer for motion in the negative x direction must be the same.  Also we set the piston coordinate, xP, to zero when the piston is at the center of the cylinder.

The average time between collisions of the atom with the front of the moving piston is
τ F = 2(L/2 x p ) < v x > MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes8a0naaBa aaleaacaWGgbaabeaakiabg2da9maalaaabaGaaGOmaiaacIcacaWG mbGaai4laiaaikdacqGHsislcaWG4bWaaSbaaSqaaiaadchaaeqaaO GaaiykaaqaaiabgYda8iaadAhadaWgaaWcbaGaamiEaaqabaGccqGH +aGpaaaaaa@456B@

and the time between collisions with the back of the moving piston is

 

τ B = 2(L/2+ x p ) < v x > MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes8a0naaBa aaleaacaWGcbaabeaakiabg2da9maalaaabaGaaGOmaiaacIcacaWG mbGaai4laiaaikdacqGHRaWkcaWG4bWaaSbaaSqaaiaadchaaeqaaO GaaiykaaqaaiabgYda8iaadAhadaWgaaWcbaGaamiEaaqabaGccqGH +aGpaaaaaa@455C@

where L is the total length of the cylinder and <vx> is the average x component of the velocity.

< v x >= E total mN MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgYda8iaadA hadaWgaaWcbaGaamiEaaqabaGccqGH+aGpcqGH9aqpdaGcaaqaamaa laaabaGaamyramaaBaaaleaacaWG0bGaam4BaiaadshacaWGHbGaam iBaaqabaaakeaacaWGTbGaamOtaaaaaSqabaaaaa@42D8@

where Etotal is the total kinetic energy of the atoms and N is the total number of atoms.

 

The total rate of collision on the front and back side is then just the number of atoms, N, on that side divided by its average interval between collisions:

d N F dt = N F < v x > 2( L/2 x p ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiaad6eadaWgaaWcbaGaamOraaqabaaakeaacaWGKbGaamiDaaaa cqGH9aqpdaWcaaqaaiaad6eadaWgaaWcbaGaamOraaqabaGccqGH8a apcaWG2bWaaSbaaSqaaiaadIhaaeqaaOGaeyOpa4dabaGaaGOmamaa bmaabaGaamitaiaac+cacaaIYaGaeyOeI0IaamiEamaaBaaaleaaca WGWbaabeaaaOGaayjkaiaawMcaaaaaaaa@4958@

d N B dt = N B < v x > 2( L/2+ x p ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiaad6eadaWgaaWcbaGaamOqaaqabaaakeaacaWGKbGaamiDaaaa cqGH9aqpdaWcaaqaaiaad6eadaWgaaWcbaGaamOqaaqabaGccqGH8a apcaWG2bWaaSbaaSqaaiaadIhaaeqaaOGaeyOpa4dabaGaaGOmamaa bmaabaGaamitaiaac+cacaaIYaGaey4kaSIaamiEamaaBaaaleaaca WGWbaabeaaaOGaayjkaiaawMcaaaaaaaa@4945@

The energy transfer per collision is just due to the added or reduced x component of velocity due to the moving piston:

δE= 1 2 ( m ( v x + v P ) 2 ) 1 2 m v x 2 = 1 2 m( 2 v x v p + v p 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaadw eacqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaamaabmaabaGaamyB aiaacIcacaWG2bWaaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaamODam aaBaaaleaacaWGqbaabeaakiaacMcadaahaaWcbeqaaiaaikdaaaaa kiaawIcacaGLPaaacqGHsisldaWcaaqaaiaaigdaaeaacaaIYaaaai aad2gacaWG2bWaa0baaSqaaiaadIhaaeaacaaIYaaaaOGaeyypa0Za aSaaaeaacaaIXaaabaGaaGOmaaaacaWGTbWaaeWaaeaacaaIYaGaam ODamaaBaaaleaacaWG4baabeaakiaadAhadaWgaaWcbaGaamiCaaqa baGccqGHRaWkcaWG2bWaa0baaSqaaiaadchaaeaacaaIYaaaaaGcca GLOaGaayzkaaaaaa@58F2@

where m is the mass of the atom and vp can be positive or negative.

Then the rate of energy added per second to atoms colliding with the front of the piston is :

d E F dt = d N F dt δE= 1 4 N F < v x > ( L/2 x p ) m( 2 v x v p + v p 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiaadweadaWgaaWcbaGaamOraaqabaaakeaacaWGKbGaamiDaaaa cqGH9aqpdaWcaaqaaiaadsgacaWGobWaaSbaaSqaaiaadAeaaeqaaa GcbaGaamizaiaadshaaaGaeqiTdqMaamyraiabg2da9maalaaabaGa aGymaaqaaiaaisdaaaWaaSaaaeaacaWGobWaaSbaaSqaaiaadAeaae qaaOGaeyipaWJaamODamaaBaaaleaacaWG4baabeaakiabg6da+aqa amaabmaabaGaamitaiaac+cacaaIYaGaeyOeI0IaamiEamaaBaaale aacaWGWbaabeaaaOGaayjkaiaawMcaaaaacaWGTbWaaeWaaeaacaaI YaGaamODamaaBaaaleaacaWG4baabeaakiaadAhadaWgaaWcbaGaam iCaaqabaGccqGHRaWkcaWG2bWaa0baaSqaaiaadchaaeaacaaIYaaa aaGccaGLOaGaayzkaaaaaa@5D90@

and the rate of energy subtracted per second from atoms colliding with the back of the piston is:

d E B dt = d N B dt δE= 1 4 N B < v x > ( L/2+ x p ) m( 2 v x v p + v p 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiaadweadaWgaaWcbaGaamOqaaqabaaakeaacaWGKbGaamiDaaaa cqGH9aqpdaWcaaqaaiaadsgacaWGobWaaSbaaSqaaiaadkeaaeqaaa GcbaGaamizaiaadshaaaGaeqiTdqMaamyraiabg2da9maalaaabaGa aGymaaqaaiaaisdaaaWaaSaaaeaacaWGobWaaSbaaSqaaiaadkeaae qaaOGaeyipaWJaamODamaaBaaaleaacaWG4baabeaakiabg6da+aqa amaabmaabaGaamitaiaac+cacaaIYaGaey4kaSIaamiEamaaBaaale aacaWGWbaabeaaaOGaayjkaiaawMcaaaaacaWGTbWaaeWaaeaacqGH sislcaaIYaGaamODamaaBaaaleaacaWG4baabeaakiaadAhadaWgaa WcbaGaamiCaaqabaGccqGHRaWkcaWG2bWaa0baaSqaaiaadchaaeaa caaIYaaaaaGccaGLOaGaayzkaaaaaa@5E66@

So the program continuously integrates the dE/dt increments to estimate the added kinetic energy associated with the periodic adiabatic compressions.  Of course here, xp and vp vary sinusoidally with time.

 

Calculation of Force on Piston

            The net force on the moving piston due to atoms hitting it is calculated in an entirely similar way to the energy induced in the atomic gas by the piston.  First we have the rates of atoms hitting the front and back of the piston:

1 τ F = < v x > 2(L/2 x p ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaaqaaiabes8a0naaBaaaleaacaWGgbaabeaaaaGccqGH9aqpdaWc aaqaaiabgYda8iaadAhadaWgaaWcbaGaamiEaaqabaGccqGH+aGpae aacaaIYaGaaiikaiaadYeacaGGVaGaaGOmaiabgkHiTiaadIhadaWg aaWcbaGaamiCaaqabaGccaGGPaaaaaaa@4636@

1 τ B = < v x > 2(L/2+ x p ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaaqaaiabes8a0naaBaaaleaacaWGcbaabeaaaaGccqGH9aqpdaWc aaqaaiabgYda8iaadAhadaWgaaWcbaGaamiEaaqabaGccqGH+aGpae aacaaIYaGaaiikaiaadYeacaGGVaGaaGOmaiabgUcaRiaadIhadaWg aaWcbaGaamiCaaqabaGccaGGPaaaaaaa@4627@

The momentum imparted to the moving piston for each collision averages:

δ p F =m(2< v x >+ v P ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaadc hadaWgaaWcbaGaamOraaqabaGccqGH9aqpcqGHsislcaWGTbGaaiik aiaaikdacqGH8aapcaWG2bWaaSbaaSqaaiaadIhaaeqaaOGaeyOpa4 Jaey4kaSIaamODamaaBaaaleaacaWGqbaabeaakiaacMcaaaa@45A2@

δ p B =m(2< v x > v P ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaadc hadaWgaaWcbaGaamOqaaqabaGccqGH9aqpcaWGTbGaaiikaiaaikda cqGH8aapcaWG2bWaaSbaaSqaaiaadIhaaeqaaOGaeyOpa4JaeyOeI0 IaamODamaaBaaaleaacaWGqbaabeaakiaacMcaaaa@44BC@

And therefore the total momentum in the positive x direction imparted per second from all the atoms hitting the front and back of the piston is:

δ P F dt = N F τ f m(2< v x >+ v P )= N F m(2< v x >+ v P ) < v x > 2(L/2 x p ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaeq iTdqMaamiuamaaBaaaleaacaWGgbaabeaaaOqaaiaadsgacaWG0baa aiabg2da9iabgkHiTmaalaaabaGaamOtamaaBaaaleaacaWGgbaabe aaaOqaaiabes8a0naaBaaaleaacaWGMbaabeaaaaGccaWGTbGaaiik aiaaikdacqGH8aapcaWG2bWaaSbaaSqaaiaadIhaaeqaaOGaeyOpa4 Jaey4kaSIaamODamaaBaaaleaacaWGqbaabeaakiaacMcacqGH9aqp cqGHsislcaWGobWaaSbaaSqaaiaadAeaaeqaaOGaamyBaiaacIcaca aIYaGaeyipaWJaamODamaaBaaaleaacaWG4baabeaakiabg6da+iab gUcaRiaadAhadaWgaaWcbaGaamiuaaqabaGccaGGPaWaaSaaaeaacq GH8aapcaWG2bWaaSbaaSqaaiaadIhaaeqaaOGaeyOpa4dabaGaaGOm aiaacIcacaWGmbGaai4laiaaikdacqGHsislcaWG4bWaaSbaaSqaai aadchaaeqaaOGaaiykaaaaaaa@65E2@

δ P B dt = N B τ f m(2< v x > v P )= N B m(2< v x > v P ) < v x > 2(L/2+ x p ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaeq iTdqMaamiuamaaBaaaleaacaWGcbaabeaaaOqaaiaadsgacaWG0baa aiabg2da9iabgkHiTmaalaaabaGaamOtamaaBaaaleaacaWGcbaabe aaaOqaaiabes8a0naaBaaaleaacaWGMbaabeaaaaGccaWGTbGaaiik aiaaikdacqGH8aapcaWG2bWaaSbaaSqaaiaadIhaaeqaaOGaeyOpa4 JaeyOeI0IaamODamaaBaaaleaacaWGqbaabeaakiaacMcacqGH9aqp caWGobWaaSbaaSqaaiaadkeaaeqaaOGaamyBaiaacIcacaaIYaGaey ipaWJaamODamaaBaaaleaacaWG4baabeaakiabg6da+iabgkHiTiaa dAhadaWgaaWcbaGaamiuaaqabaGccaGGPaWaaSaaaeaacqGH8aapca WG2bWaaSbaaSqaaiaadIhaaeqaaOGaeyOpa4dabaGaaGOmaiaacIca caWGmbGaai4laiaaikdacqGHRaWkcaWG4bWaaSbaaSqaaiaadchaae qaaOGaaiykaaaaaaa@64F4@

and therefore the total force on the piston is:

F= N F m(2< v x >+ v P ) < v x > 2(L/2 x p ) + N B m(2< v x > v P ) < v x > 2(L/2+ x p ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeacqGH9a qpcqGHsislcaWGobWaaSbaaSqaaiaadAeaaeqaaOGaamyBaiaacIca caaIYaGaeyipaWJaamODamaaBaaaleaacaWG4baabeaakiabg6da+i abgUcaRiaadAhadaWgaaWcbaGaamiuaaqabaGccaGGPaWaaSaaaeaa cqGH8aapcaWG2bWaaSbaaSqaaiaadIhaaeqaaOGaeyOpa4dabaGaaG OmaiaacIcacaWGmbGaai4laiaaikdacqGHsislcaWG4bWaaSbaaSqa aiaadchaaeqaaOGaaiykaaaacqGHRaWkcaWGobWaaSbaaSqaaiaadk eaaeqaaOGaamyBaiaacIcacaaIYaGaeyipaWJaamODamaaBaaaleaa caWG4baabeaakiabg6da+iabgkHiTiaadAhadaWgaaWcbaGaamiuaa qabaGccaGGPaWaaSaaaeaacqGH8aapcaWG2bWaaSbaaSqaaiaadIha aeqaaOGaeyOpa4dabaGaaGOmaiaacIcacaWGmbGaai4laiaaikdacq GHRaWkcaWG4bWaaSbaaSqaaiaadchaaeqaaOGaaiykaaaaaaa@68E9@

Obviously, if NF=NB we have a force on the piston even when vp=0.  That is reasonable, since, when, for example, xP>0, the gas on the right side is compressed.

 

Calculation of Average Atomic Horizontal Speed

            Again, we have the average rate of collisions with the moving piston:

1 τ = < v x > 2(L/2 x p ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaaqaaiabes8a0baacqGH9aqpdaWcaaqaaiabgYda8iaadAhadaWg aaWcbaGaamiEaaqabaGccqGH+aGpaeaacaaIYaGaaiikaiaadYeaca GGVaGaaGOmaiabgkHiTiaadIhadaWgaaWcbaGaamiCaaqabaGccaGG Paaaaaaa@4535@

and with each collision we expect the atom to gain speed vp.  Then the added speed in +x direction would be:

d v x dt = v p τ F = < v x > v p 2(L/2 x p ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiaadAhadaWgaaWcbaGaamiEaaqabaaakeaacaWGKbGaamiDaaaa cqGH9aqpdaWcaaqaaiaadAhadaWgaaWcbaGaamiCaaqabaaakeaacq aHepaDdaWgaaWcbaGaamOraaqabaaaaOGaeyypa0ZaaSaaaeaacqGH 8aapcaWG2bWaaSbaaSqaaiaadIhaaeqaaOGaeyOpa4JaamODamaaBa aaleaacaWGWbaabeaaaOqaaiaaikdacaGGOaGaamitaiaac+cacaaI YaGaeyOeI0IaamiEamaaBaaaleaacaWGWbaabeaakiaacMcaaaaaaa@4FD6@

where both the numerator and denominator vary sinusoidally.