Statics of Two Masses Fastened to a Rigid Rod Under the Force of Gravity

Introduction

            It is easy to find simple horizontal statics tutorials on the internet but I have not been able to find any that involve a tilted supports with either two masses or non-uniform mass distribution.  This animation should fill that niche.

Figure

Figure 1: Showing the 3 fulcrums (scales) in red, the rigid rod on which the masses are fastened, the masses, and the center of gravity (CG) and distances from the fulcrums to the CG.  Currently the longitudinal force is 57 when the transverse forces are 37 and 20, respectively.

 

Calculations for Lumped Masses:

Let subscript t stand for transverse to the rigid rod and subscript l stand for longitudinal to the rigid rod.  Since the rod is rigid, we may treat the problem as if there were only one mass M=(m1+m2), centered at the CG where xCG is

x CG = x m1 m 1 + x m2 m2 m 1 + m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaam4qaiaadEeaaeqaaOGaeyypa0ZaaSaaaeaacaWG4bWaaSba aSqaaiaad2gacaaIXaaabeaakiaad2gadaWgaaWcbaGaaGymaaqaba GccqGHRaWkcaWG4bWaaSbaaSqaaiaad2gacaaIYaaabeaakiaad2ga caaIYaaabaGaamyBamaaBaaaleaacaaIXaaabeaakiabgUcaRiaad2 gadaWgaaWcbaGaaGOmaaqabaaaaaaa@489B@

F l =Mgsin(θ)LongitudinalForce F 1 x1F= F 2 x2FTorqueaboutCGiszero ( F 1 + F 2 )cos(θ)+Mg sin 2 (θ)=MgTotalupwardforceisMg F 1 ( 1+ x1F x2F )cos(θ)=Mg cos 2 (θ)Usetrigidentityfor1 sin 2 θ F 1 = Mgcos(θ) 1+x1F/x2F ; F tRight = x1F x2F Mgcos(θ) 1+x1F/x2F ;Solveaboveequation F 1 + F 2 =Mgcos(θ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamOram aaBaaaleaacaWGSbaabeaakiabg2da9iaad2eacaWGNbGaci4Caiaa cMgacaGGUbGaaiikaiabeI7aXjaacMcacaaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caWGmbGaam4Baiaad6gacaWGNbGaamyAaiaa dshacaWG1bGaamizaiaadMgacaWGUbGaamyyaiaadYgacaaMc8Uaam Oraiaad+gacaWGYbGaam4yaiaadwgaaeaacaWGgbWaaSbaaSqaaiaa igdaaeqaaOGaamiEaiaaigdacaWGgbGaeyypa0JaamOramaaBaaale aacaaIYaaabeaakiaadIhacaaIYaGaamOraiaaykW7caaMc8UaaGPa VlaadsfacaWGVbGaamOCaiaadghacaWG1bGaamyzaiaaykW7caWGHb GaamOyaiaad+gacaWG1bGaamiDaiaaykW7caWGdbGaam4raiaaykW7 caWGPbGaam4CaiaaykW7caWG6bGaamyzaiaadkhacaWGVbGaaGPaVd qaaiaacIcacaWGgbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamOr amaaBaaaleaacaaIYaaabeaakiaacMcaciGGJbGaai4Baiaacohaca GGOaGaeqiUdeNaaiykaiabgUcaRiaad2eacaWGNbGaci4CaiaacMga caGGUbWaaWbaaSqabeaacaaIYaaaaOGaaiikaiabeI7aXjaacMcacq GH9aqpcaWGnbGaam4zaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8Uaamivaiaad+gacaWG0bGaamyyaiaadYgaca aMc8UaamyDaiaadchacaWG3bGaamyyaiaadkhacaWGKbGaaGPaVlaa dAgacaWGVbGaamOCaiaadogacaWGLbGaaGPaVlaadMgacaWGZbGaaG PaVlaad2eacaWGNbaabaGaamOramaaBaaaleaacaaIXaaabeaakmaa bmaabaGaaGymaiabgUcaRmaalaaabaGaamiEaiaaigdacaWGgbaaba GaamiEaiaaikdacaWGgbaaaaGaayjkaiaawMcaaiGacogacaGGVbGa ai4CaiaacIcacqaH4oqCcaGGPaGaeyypa0JaamytaiaadEgaciGGJb Gaai4BaiaacohadaahaaWcbeqaaiaaikdaaaGccaGGOaGaeqiUdeNa aiykaiaaykW7caaMc8UaaGPaVlaaykW7caWGvbGaam4Caiaadwgaca aMc8UaamiDaiaadkhacaWGPbGaam4zaiaaykW7caWGPbGaamizaiaa dwgacaWGUbGaamiDaiaadMgacaWG0bGaamyEaiaaykW7caWGMbGaam 4BaiaadkhacaaMc8UaaGPaVlaaigdacqGHsislciGGZbGaaiyAaiaa c6gadaahaaWcbeqaaiaaikdaaaGccqaH4oqCaeaacaWGgbWaaSbaaS qaaiaaigdaaeqaaOGaeyypa0ZaaSaaaeaacaWGnbGaam4zaiGacoga caGGVbGaai4CaiaacIcacqaH4oqCcaGGPaaabaGaaGymaiabgUcaRi aadIhacaaIXaGaamOraiaac+cacaWG4bGaaGOmaiaadAeaaaGaai4o aiaaykW7caaMc8UaamOramaaBaaaleaacaWG0bGaamOuaiaadMgaca WGNbGaamiAaiaadshaaeqaaOGaeyypa0ZaaSaaaeaacaWG4bGaaGym aiaadAeaaeaacaWG4bGaaGOmaiaadAeaaaWaaSaaaeaacaWGnbGaam 4zaiGacogacaGGVbGaai4CaiaacIcacqaH4oqCcaGGPaaabaGaaGym aiabgUcaRiaadIhacaaIXaGaamOraiaac+cacaWG4bGaaGOmaiaadA eaaaGaai4oaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caWGtbGaam4BaiaadYgacaWG2bGaamyzaiaaykW7caWGHbGaam Oyaiaad+gacaWG2bGaamyzaiaaykW7caWGLbGaamyCaiaadwhacaWG HbGaamiDaiaadMgacaWGVbGaamOBaaqaaiabgsJiCjaaykW7caaMc8 UaamOramaaBaaaleaacaaIXaaabeaakiabgUcaRiaadAeadaWgaaWc baGaaGOmaaqabaGccqGH9aqpcaWGnbGaam4zaiGacogacaGGVbGaai 4CaiaacIcacqaH4oqCcaGGPaaaaaa@610C@

Note that the resultant of all 3 forces is Mg and points upward.  Also note that the upward components of Ft are proportional to cos2(θ), which for small θ is extremely close to 1.

 

Calculations for Linearly Distributed Mass

For now, assume θ=0 and let:

ρ(x)= ρ 0 +ρ'x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYjaacI cacaWG4bGaaiykaiabg2da9iabeg8aYnaaBaaaleaacaaIWaaabeaa kiabgUcaRiabeg8aYjaacEcacaWG4baaaa@4201@

x CM = 0 L xρ(x)dx 0 L ρ(x)dx = ρ 0 L 2 /2+ρ' L 3 /3 ρ 0 L+ρ' L 2 /2 = L/2[1+2ρ'L/(3 ρ 0 )] 1+ρ'L/(2 ρ 0 ) L/2[1+2ρ'L/(3 ρ 0 )][1ρ'L/(2 ρ 0 )]L/2[1+ρ'L/(6 ρ 0 )] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamiEam aaBaaaleaacaWGdbGaamytaaqabaGccqGH9aqpdaWcaaqaamaapeha baGaamiEaiabeg8aYjaacIcacaWG4bGaaiykaiaadsgacaWG4baale aacaaIWaaabaGaamitaaqdcqGHRiI8aaGcbaWaa8qCaeaacqaHbpGC caGGOaGaamiEaiaacMcacaWGKbGaamiEaaWcbaGaaGimaaqaaiaadY eaa0Gaey4kIipaaaGccqGH9aqpdaWcaaqaaiabeg8aYnaaBaaaleaa caaIWaaabeaakiaadYeadaahaaWcbeqaaiaaikdaaaGccaGGVaGaaG OmaiabgUcaRiabeg8aYjaacEcacaWGmbWaaWbaaSqabeaacaaIZaaa aOGaai4laiaaiodaaeaacqaHbpGCdaWgaaWcbaGaaGimaaqabaGcca WGmbGaey4kaSIaeqyWdiNaai4jaiaadYeadaahaaWcbeqaaiaaikda aaGccaGGVaGaaGOmaaaacqGH9aqpdaWcaaqaaiaadYeacaGGVaGaaG OmaiaacUfacaaIXaGaey4kaSIaaGOmaiabeg8aYjaacEcacaWGmbGa ai4laiaacIcacaaIZaGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaOGaai ykaiaac2faaeaacaaIXaGaey4kaSIaeqyWdiNaai4jaiaadYeacaGG VaGaaiikaiaaikdacqaHbpGCdaWgaaWcbaGaaGimaaqabaGccaGGPa aaaiabgIKi7cqaaiaadYeacaGGVaGaaGOmaiaacUfacaaIXaGaey4k aSIaaGOmaiabeg8aYjaacEcacaWGmbGaai4laiaacIcacaaIZaGaeq yWdi3aaSbaaSqaaiaaicdaaeqaaOGaaiykaiaac2facaGGBbGaaGym aiabgkHiTiabeg8aYjaacEcacaWGmbGaai4laiaacIcacaaIYaGaeq yWdi3aaSbaaSqaaiaaicdaaeqaaOGaaiykaiaac2facqGHijYUcaWG mbGaai4laiaaikdacaGGBbGaaGymaiabgUcaRiabeg8aYjaacEcaca WGmbGaai4laiaacIcacaaI2aGaeqyWdi3aaSbaaSqaaiaaicdaaeqa aOGaaiykaiaac2faaaaa@AD98@

where the approximations apply for small values of ρ'L/ρ0.

It's as if we had masses at x=0 and x=L of values:

m(0)=(M/2)(1f) m(L)=(M/2)(1+f) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyBai aacIcacaaIWaGaaiykaiabg2da9iaacIcacaWGnbGaai4laiaaikda caGGPaGaaiikaiaaigdacqGHsislcaWGMbGaaiykaaqaaiaad2gaca GGOaGaamitaiaacMcacqGH9aqpcaGGOaGaamytaiaac+cacaaIYaGa aiykaiaacIcacaaIXaGaey4kaSIaamOzaiaacMcaaaaa@4D20@

where

f= [1+2ρ'L/(3 ρ 0 )] 1+ρ'L/(2 ρ 0 ) 1= ρ'L/(6 ρ 0 ) 1+ρ'L/(2 ρ 0 ) ρ'L/(6 ρ 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgacqGH9a qpdaWcaaqaaiaacUfacaaIXaGaey4kaSIaaGOmaiabeg8aYjaacEca caWGmbGaai4laiaacIcacaaIZaGaeqyWdi3aaSbaaSqaaiaaicdaae qaaOGaaiykaiaac2faaeaacaaIXaGaey4kaSIaeqyWdiNaai4jaiaa dYeacaGGVaGaaiikaiaaikdacqaHbpGCdaWgaaWcbaGaaGimaaqaba GccaGGPaaaaiabgkHiTiaaigdacqGH9aqpdaWcaaqaaiabeg8aYjaa cEcacaWGmbGaai4laiaacIcacaaI2aGaeqyWdi3aaSbaaSqaaiaaic daaeqaaOGaaiykaaqaaiaaigdacqGHRaWkcqaHbpGCcaGGNaGaamit aiaac+cacaGGOaGaaGOmaiabeg8aYnaaBaaaleaacaaIWaaabeaaki aacMcaaaGaeyisISRaeqyWdiNaai4jaiaadYeacaGGVaGaaiikaiaa iAdacqaHbpGCdaWgaaWcbaGaaGimaaqabaGccaGGPaaaaa@6F3B@

and where the total mass is:

M= 0 L ρ(x)dx = ρ 0 L(1+ρ'L/(2 ρ 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eacqGH9a qpdaWdXbqaaiabeg8aYjaacIcacaWG4bGaaiykaiaadsgacaWG4baa leaacaaIWaaabaGaamitaaqdcqGHRiI8aOGaeyypa0JaeqyWdi3aaS baaSqaaiaaicdaaeqaaOGaamitaiaacIcacaaIXaGaey4kaSIaeqyW diNaai4jaiaaykW7caWGmbGaai4laiaacIcacaaIYaGaeqyWdi3aaS baaSqaaiaaicdaaeqaaOGaaiykaaaa@52CC@

We can also model the system as having a single mass M at the CG and then use two fulcrums to balance the torques about the CG.

Now, letting θ be variable, we must balance the torques about the CG in order to avoid rotation.  If r1 points from the CG to fulcrum 1 and r2 points from the CG to fulcrum 2 then the total torque about the CG is zero when we have for the forces at transverse fulcrums 1 and 2:

F 1 y ^ × r 1 = F 2 y ^ × r 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaaGymaaqabaGcceWH5bGbaKaacqGHxdaTcaWHYbWaaSbaaSqa aiaahgdaaeqaaOGaeyypa0JaamOramaaBaaaleaacaaIYaaabeaaki qahMhagaqcaiabgEna0kaahkhadaWgaaWcbaGaaCOmaaqabaaaaa@4489@

where the carat above y indicates a unit vector. Note that

y ^ ×r=|r|cosθ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqahMhagaqcai abgEna0kaahkhacqGH9aqpcaGG8bGaaCOCaiaacYhaciGGJbGaai4B aiaacohacqaH4oqCaaa@4299@

Resolving r1 and r2 into x and y components we have:

r 1 = x 1 x ^ + y 1 y ^ r 2 = x 2 x ^ + y 2 y ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaaCOCam aaBaaaleaacaWHXaaabeaakiabg2da9iaadIhadaWgaaWcbaGaaGym aaqabaGcceWH4bGbaKaacqGHRaWkcaWG5bWaaSbaaSqaaiaaigdaae qaaOGabCyEayaajaaabaGaaCOCamaaBaaaleaacaaIYaaabeaakiab g2da9iaadIhadaWgaaWcbaGaaGOmaaqabaGcceWH4bGbaKaacqGHRa WkcaWG5bWaaSbaaSqaaiaaikdaaeqaaOGabCyEayaajaaaaaa@499C@

where the x's and y's with the 1 subscript have signs opposite to those with the 2 subscript.  The values of x,y are:

x 1 = r 1 cos(θ), y 1 = r 1 sin(θ) x 2 = r 2 cos(θ), y 2 = r 2 sin(θ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamiEam aaBaaaleaacaWHXaaabeaakiabg2da9iabgkHiTiaadkhadaWgaaWc baGaaGymaaqabaGcciGGJbGaai4BaiaacohacaGGOaGaeqiUdeNaai ykaiaacYcacaWG5bWaaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaeyOe I0IaamOCamaaBaaaleaacaaIXaaabeaakiGacohacaGGPbGaaiOBai aacIcacqaH4oqCcaGGPaaabaGaamiEamaaBaaaleaacaaIYaaabeaa kiabg2da9iaadkhadaWgaaWcbaGaaGOmaaqabaGcciGGJbGaai4Bai aacohacaGGOaGaeqiUdeNaaiykaiaacYcacaWG5bWaaSbaaSqaaiaa ikdaaeqaaOGaeyypa0JaamOCamaaBaaaleaacaaIYaaabeaakiGaco hacaGGPbGaaiOBaiaacIcacqaH4oqCcaGGPaaaaaa@6433@

Then the torque balance equation becomes:

 

F 1 r 1 cos(θ)= F 2 r 2 cos(θ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaaGymaaqabaGccaWGYbWaaSbaaSqaaiaaigdaaeqaaOGaci4y aiaac+gacaGGZbGaaiikaiabeI7aXjaacMcacqGH9aqpcaWGgbWaaS baaSqaaiaaikdaaeqaaOGaamOCamaaBaaaleaacaaIYaaabeaakiGa cogacaGGVbGaai4CaiaacIcacqaH4oqCcaGGPaaaaa@49FF@

Of course, when the centerline of the mass distribution is tilted at angle q, we must have a longitudinal restraining force

F L =Mgsinθ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaamitaaqabaGccqGH9aqpcaWGnbGaam4zaiGacohacaGGPbGa aiOBaiabeI7aXbaa@3F0F@

Just as before we have:

F 1 = Mgcos(θ) 1+ r 1 / r 2 ; F 2 = r 1 r 2 Mgcos(θ) 1+ r 1 / r 2 ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaaGymaaqabaGccqGH9aqpdaWcaaqaaiaad2eacaWGNbGaci4y aiaac+gacaGGZbGaaiikaiabeI7aXjaacMcaaeaacaaIXaGaey4kaS IaamOCamaaBaaaleaacaaIXaaabeaakiaac+cacaWGYbWaaSbaaSqa aiaaikdaaeqaaaaakiaacUdacaaMc8UaaGPaVlaadAeadaWgaaWcba GaaGOmaaqabaGccqGH9aqpdaWcaaqaaiaadkhadaWgaaWcbaGaaGym aaqabaaakeaacaWGYbWaaSbaaSqaaiaaikdaaeqaaaaakmaalaaaba GaamytaiaadEgaciGGJbGaai4BaiaacohacaGGOaGaeqiUdeNaaiyk aaqaaiaaigdacqGHRaWkcaWGYbWaaSbaaSqaaiaaigdaaeqaaOGaai 4laiaadkhadaWgaaWcbaGaaGOmaaqabaaaaOGaai4oaiaaykW7aaa@6112@

Note that the sum F1+F2 is

F 1 + F 2 =Mgcos(θ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaaGymaaqabaGccqGHRaWkcaWGgbWaaSbaaSqaaiaaikdaaeqa aOGaeyypa0JaamytaiaadEgaciGGJbGaai4BaiaacohacaGGOaGaeq iUdeNaaiykaaaa@42EC@

This is the force transverse to the line between the fulcrums.  Its upward component is

( F 1 + F 2 ) y =Mg cos 2 θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcacaWGgb WaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamOramaaBaaaleaacaaI YaaabeaakiaacMcadaWgaaWcbaGaamyEaaqabaGccqGH9aqpcaWGnb Gaam4zaiGacogacaGGVbGaai4CamaaCaaaleqabaGaaGOmaaaakiab eI7aXbaa@4513@

The upward component of FL is

F Ly =Mg sin 2 (θ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaamitaiaadMhaaeqaaOGaeyypa0JaamytaiaadEgaciGGZbGa aiyAaiaac6gadaahaaWcbeqaaiaaikdaaaGccaGGOaGaeqiUdeNaai ykaaaa@4259@

so that the sum of the upward component of the forces at all 3 fulcrums is Mg, as expected.