Forced Harmonic Oscillator Motion

Introduction

The forced simple harmonic oscillator’s (FSHO) motion is a good approximation of the driven motion of practically all real-world objects that present periodic motion.  Even though the SHO’s restoring force is linear in displacement, its motion is a good approximation for a motion of a system with non-linear restoring force, at least within a limited range of the latter’s displacement.  Therefore a good grasp on the dynamics of the FSHO goes a long way toward understanding the dynamics of the real world.

Calculations:

 

The picture on the left shows the important parameters of the SHO. They include a spring (shown here as a coil with spring constant k Newtons per meter), a drag element (shown here as a shock absorber

Drag element

Constant=b

 

Spring

Constant=k

 
Text Box:  , often called a dashpot, with a constant b Newtons-seconds per meter) and a Mass, M, at the bottom.  The function of the spring is to restore the mass to an equilibrium height and the function of the drag element is to realistically simulate the decay of any oscillation that is in progress.

 

The equation that describes the motion of the mass is:

M d 2 y d t 2 +b dy dt +ky= F 0 cos(ωt) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eadaWcaa qaaiaadsgadaahaaWcbeqaaiaaikdaaaGccaWG5baabaGaamizaiaa dshadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSIaamOyamaalaaaba GaamizaiaadMhaaeaacaWGKbGaamiDaaaacqGHRaWkcaWGRbGaamyE aiabg2da9iaadAeadaWgaaWcbaGaaGimaaqabaGcciGGJbGaai4Bai aacohacaGGOaGaeqyYdCNaamiDaiaacMcaaaa@4EA1@

(1)

where F0 is the peak force and ω is the radian frequency of that force.

To solve equation 1 we make the substitution:

y=Real[ Yexp( iωt ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMhacqGH9a qpciGGsbGaaiyzaiaadggacaWGSbWaamWaaeaacaWGzbGaciyzaiaa cIhacaGGWbWaaeWaaeaacaWGPbGaeqyYdCNaamiDaaGaayjkaiaawM caaaGaay5waiaaw2faaaaa@466F@

(2)

where i is the square root of -1, Real[] denotes the real part of the resulting value, Y is the complex peak displacement for the given force, t is time, and ωc (which has units of 1/time and is complex) is a parameter for which we will solve.

Using equation 2 in equation 1 we have very easily:

( ω 2 M+iωb+k)Y= F 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcacqGHsi slcqaHjpWDdaqhaaWcbaaabaGaaGOmaaaakiaad2eacqGHRaWkcaWG PbGaeqyYdCNaamOyaiabgUcaRiaadUgacaGGPaGaamywaiabg2da9i aadAeadaWgaaWcbaGaaGimaaqabaaaaa@45AE@

(3)

The result for Y is:

Y= F 0 M( k M +iω b M ω 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMfacqGH9a qpdaWcaaqaaiaadAeadaWgaaWcbaGaaGimaaqabaaakeaacaWGnbWa aeWaaeaadaWcaaqaaiaadUgaaeaacaWGnbaaaiabgUcaRiaadMgacq aHjpWDdaWcaaqaaiaadkgaaeaacaWGnbaaaiabgkHiTiabeM8a3naa CaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaaaaaaa@46DA@

(4)

For convenience we make the following definitions:

ω 0 2 = k M α= b M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeqyYdC 3aa0baaSqaaiaaicdaaeaacaaIYaaaaOGaeyypa0ZaaOaaaeaadaWc aaqaaiaadUgaaeaacaWGnbaaaaWcbeaaaOqaaiabeg7aHjabg2da9m aakaaabaWaaSaaaeaacaWGIbaabaGaamytaaaaaSqabaaaaaa@40F2@

(5)

 

so that equation 4 becomes. 

            Y= F 0 M 1 ω o 2 ω 2 +iωα = F 0 M ω o 2 ω 2 iωα ( ω o 2 ω 2 ) 2 + ( ωα ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMfacqGH9a qpdaWcaaqaaiaadAeadaWgaaWcbaGaaGimaaqabaaakeaacaWGnbaa amaalaaabaGaaGymaaqaaiabeM8a3naaDaaaleaacaWGVbaabaGaaG OmaaaakiabgkHiTiabeM8a3naaCaaaleqabaGaaGOmaaaakiabgUca RiaadMgacqaHjpWDcqaHXoqyaaGaeyypa0ZaaSaaaeaacaWGgbWaaS baaSqaaiaaicdaaeqaaaGcbaGaamytaaaadaWcaaqaaiabeM8a3naa DaaaleaacaWGVbaabaGaaGOmaaaakiabgkHiTiabeM8a3naaCaaale qabaGaaGOmaaaakiabgkHiTiaadMgacqaHjpWDcqaHXoqyaeaadaqa daqaaiabeM8a3naaDaaaleaacaWGVbaabaGaaGOmaaaakiabgkHiTi abeM8a3naaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaamaaCaaa leqabaGaaGOmaaaakiabgUcaRmaabmaabaGaeqyYdCNaeqySdegaca GLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaaaaaa@68CC@                                             (4a)     

Also, we now separate the real and imaginary parts of equation 4a by re-naming these quantities:

Y Re = F 0 M ω o 2 ω 2 ( ω o 2 ω 2 ) 2 + ( ωα ) 2 Y Im = F 0 M ωα ( ω o 2 ω 2 ) 2 + ( ωα ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMfadaWgaa WcbaGaciOuaiaacwgaaeqaaOGaeyypa0ZaaSaaaeaacaWGgbWaaSba aSqaaiaaicdaaeqaaaGcbaGaamytaaaadaWcaaqaaiabeM8a3naaDa aaleaacaWGVbaabaGaaGOmaaaakiabgkHiTiabeM8a3naaCaaaleqa baGaaGOmaaaaaOqaamaabmaabaGaeqyYdC3aa0baaSqaaiaad+gaae aacaaIYaaaaOGaeyOeI0IaeqyYdC3aaWbaaSqabeaacaaIYaaaaaGc caGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSYaaeWaae aacqaHjpWDcqaHXoqyaiaawIcacaGLPaaadaahaaWcbeqaaiaaikda aaaaaOGaaGPaVlaaykW7caaMc8UaamywamaaBaaaleaaciGGjbGaai yBaaqabaGccqGH9aqpcqGHsisldaWcaaqaaiaadAeadaWgaaWcbaGa aGimaaqabaaakeaacaWGnbaaamaalaaabaGaeqyYdCNaeqySdegaba WaaeWaaeaacqaHjpWDdaqhaaWcbaGaam4BaaqaaiaaikdaaaGccqGH sislcqaHjpWDdaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaada ahaaWcbeqaaiaaikdaaaGccqGHRaWkdaqadaqaaiabeM8a3jabeg7a HbGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaaaaaa@7499@

(6)

First, notice that the real part of YRe is positive when ω<ω0 and negative when ω>ω0.  Also note that YIm is always negative.

Using equations 6 in equation 2 we have

y(t)=Real[ ( Y Re +i Y Im )exp(iωt) ]= Y Re cos(ωt) Y Im sin(ωt) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMhacaGGOa GaamiDaiaacMcacqGH9aqpciGGsbGaaiyzaiaadggacaWGSbWaamWa aeaacaGGOaGaamywamaaBaaaleaaciGGsbGaaiyzaaqabaGccqGHRa WkcaWGPbGaamywamaaBaaaleaaciGGjbGaaiyBaaqabaGccaGGPaGa ciyzaiaacIhacaGGWbGaaiikaiaadMgacqaHjpWDcaWG0bGaaiykaa Gaay5waiaaw2faaiabg2da9iaadMfadaWgaaWcbaGaciOuaiaacwga aeqaaOGaci4yaiaac+gacaGGZbGaaiikaiabeM8a3jaadshacaGGPa GaeyOeI0IaamywamaaBaaaleaaciGGjbGaaiyBaaqabaGcciGGZbGa aiyAaiaac6gacaGGOaGaeqyYdCNaamiDaiaacMcaaaa@660A@

(7)

We may use trigonometric identities to show the phase lag of equation 7:

y= Y Re 2 + Y Im 2 cos[ ωt+ tan 1 ( Y Im Y Re ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMhacqGH9a qpdaGcaaqaaiaadMfadaqhaaWcbaGaciOuaiaacwgaaeaacaaIYaaa aOGaey4kaSIaamywamaaDaaaleaaciGGjbGaaiyBaaqaaiaaikdaaa aabeaakiGacogacaGGVbGaai4CamaadmaabaGaeqyYdCNaamiDaiab gUcaRiGacshacaGGHbGaaiOBamaaCaaaleqabaGaeyOeI0IaaGymaa aakmaabmaabaWaaSaaaeaacaWGzbWaaSbaaSqaaiGacMeacaGGTbaa beaaaOqaaiaadMfadaWgaaWcbaGaciOuaiaacwgaaeqaaaaaaOGaay jkaiaawMcaaaGaay5waiaaw2faaaaa@5463@

(8)

Note that the phase in equation 8 is negative (a phase lag) when ω<ω0 and positive when ω>ω0.

 

Summary

Equations 6, 7, and 8 are probably the most important equations in the real world for understanding driven periodic motion.  The animation accompanying this document will help you to fully appreciate these equations.