Forced Damped Harmonic Oscillator with Arbitrary Initial Conditions

Introduction

            The motion of the subject harmonic oscillator is a result that reflects very many real-life mechanisms.  Typically we expect a drag force that is proportional to the speed of the oscillator and a restoring force that is proportional to its displacement.  The drag coefficient will be labeled b here and the restoring force coefficient  will be labeled k.  Of course, the coefficient of the acceleration will be the mass, m, of the oscillating object as expected from Newton's law of motion.  The frequency of oscillation of the free oscillator will be complex since there is a drag force and this frequency will be labeled w. Since ω is complex, it will have a real part which I will name ω0 and an imaginary part labeled α. For initial conditions, we may have arbitrary displacement, y(0), as well as arbitrary initial speed y ˙ (0) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadMhagaGaai aacIcacaaIWaGaaiykaaaa@3906@  where 0 here indicates time=0, and time is labeled t here.  These are the parameters of the free oscillator.

The parameters of the sinusoidal force are the peak force value, F, and the frequency of the force, ωF.

Calculating the Motion of the Oscillator.

The values of ω0 and α come from the solution to a quadratic equation of the damped  and un-forced (free) harmonic oscillator:

m y ¨ +b y ˙ +ky=0 Lety=Real[ Yexp(iωt) ] Y(m ω 2 +iωb+ky)=0 ω= ib± b 2 +4mk 2m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyBai qadMhagaWaaiabgUcaRiaadkgaceWG5bGbaiaacqGHRaWkcaWGRbGa amyEaiabg2da9iaaicdaaeaacaWGmbGaamyzaiaadshacaaMc8Uaam yEaiabg2da9iGackfacaGGLbGaamyyaiaadYgadaWadaqaaiaadMfa ciGGLbGaaiiEaiaacchacaGGOaGaamyAaiabeM8a3jaadshacaGGPa aacaGLBbGaayzxaaaabaGaamywaiaacIcacqGHsislcaWGTbGaeqyY dC3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamyAaiabeM8a3jaadk gacqGHRaWkcaWGRbGaamyEaiaacMcacqGH9aqpcaaIWaaabaGaeqyY dCNaeyypa0ZaaSaaaeaacqGHsislcaWGPbGaamOyaiabgglaXoaaka aabaGaeyOeI0IaamOyamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaa isdacaWGTbGaam4AaaWcbeaaaOqaaiaaikdacaWGTbaaaaqaaaaaaa@737B@  

(1.1)

Assuming that 4mk>b2 and separating ω into real and imaginary parts we have:

ω 0 ω real = k m b 2 4 m 2 α ω imag = b 2m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeqyYdC 3aaSbaaSqaaiaaicdaaeqaaOGaeyyyIORaeqyYdC3aaSbaaSqaaiaa dkhacaWGLbGaamyyaiaadYgaaeqaaOGaeyypa0ZaaOaaaeaadaWcaa qaaiaadUgaaeaacaWGTbaaaiabgkHiTmaalaaabaGaamOyamaaCaaa leqabaGaaGOmaaaaaOqaaiaaisdacaWGTbWaaWbaaSqabeaacaaIYa aaaaaaaeqaaaGcbaGaeqySdeMaeyyyIORaeqyYdC3aaSbaaSqaaiaa dMgacaWGTbGaamyyaiaadEgaaeqaaOGaeyypa0JaeyOeI0YaaSaaae aacaWGIbaabaGaaGOmaiaad2gaaaaaaaa@566A@  

(1.2)

For the sinusoidally forced harmonic oscillator we have the equation:

m y ¨ +b y ˙ +ky=Fcos ω F t Lety=Real[Yexp(i ω F t)] Y(m ω F 2 +i ω F b+ky)=F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyBai qadMhagaWaaiabgUcaRiaadkgaceWG5bGbaiaacqGHRaWkcaWGRbGa amyEaiabg2da9iaadAeaciGGJbGaai4BaiaacohacqaHjpWDdaWgaa WcbaGaamOraaqabaGccaWG0baabaGaamitaiaadwgacaWG0bGaaGPa VlaadMhacqGH9aqpciGGsbGaaiyzaiaadggacaWGSbGaai4waiaadM faciGGLbGaaiiEaiaacchacaGGOaGaamyAaiabeM8a3naaBaaaleaa caWGgbaabeaakiaadshacaGGPaGaaiyxaaqaaiaacMfacaGGOaGaey OeI0IaamyBaiabeM8a3naaDaaaleaacaWGgbaabaGaaGOmaaaakiab gUcaRiaadMgacqaHjpWDdaWgaaWcbaGaamOraaqabaGccaWGIbGaey 4kaSIaam4AaiaadMhacaGGPaGaeyypa0JaamOraaaaaa@6D20@  

(1.3)

Y= F (m ω F 2 +i ω F b+k) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacMfacqGH9a qpdaWcaaqaaiaadAeaaeaacaGGOaGaeyOeI0IaamyBaiabeM8a3naa DaaaleaacaWGgbaabaGaaGOmaaaakiabgUcaRiaadMgacqaHjpWDda WgaaWcbaGaamOraaqabaGccaWGIbGaey4kaSIaam4AaiaacMcaaaaa aa@46C3@  

(1.4)

a F Y Real = F(km ω F 2 ) (km ω F 2 ) 2 + b 2 ω F 2 b F Y Imag = Fb ω F (km ω F 2 ) 2 + b 2 ω F 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyyam aaBaaaleaacaWGgbaabeaakiabggMi6kaacMfadaWgaaWcbaGaciOu aiaacwgacaWGHbGaamiBaaqabaGccqGH9aqpdaWcaaqaaiaadAeaca GGOaGaam4AaiabgkHiTiaad2gacqaHjpWDdaqhaaWcbaGaamOraaqa aiaaikdaaaGccaGGPaaabaGaaiikaiaadUgacqGHsislcaWGTbGaeq yYdC3aa0baaSqaaiaadAeaaeaacaaIYaaaaOGaaiykamaaCaaaleqa baGaaGOmaaaakiabgUcaRiaadkgadaahaaWcbeqaaiaaikdaaaGccq aHjpWDdaqhaaWcbaGaamOraaqaaiaaikdaaaaaaaGcbaGaamOyamaa BaaaleaacaWGgbaabeaakiabggMi6kaadMfadaWgaaWcbaGaciysai aac2gacaWGHbGaam4zaaqabaGccqGH9aqpdaWcaaqaaiaadAeacaWG IbGaeqyYdC3aaSbaaSqaaiaadAeaaeqaaaGcbaGaaiikaiaadUgacq GHsislcaWGTbGaeqyYdC3aa0baaSqaaiaadAeaaeaacaaIYaaaaOGa aiykamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadkgadaahaaWcbe qaaiaaikdaaaGccqaHjpWDdaqhaaWcbaGaamOraaqaaiaaikdaaaaa aaaaaa@739E@  

(1.5)

 

Combining these the general solution for both the transient and steady state is:

y(t)=exp(αt)[ c c cos( ω 0 t)+ c s sin( ω 0 t)]+ a F cos( ω F t)+ b F sin( ω F t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMhacaGGOa GaamiDaiaacMcacqGH9aqpciGGLbGaaiiEaiaacchacaGGOaGaeyOe I0IaeqySdeMaamiDaiaacMcacaGGBbGaai4yamaaBaaaleaacaWGJb aabeaakiGacogacaGGVbGaai4CaiaacIcacqaHjpWDdaWgaaWcbaGa aGimaaqabaGccaWG0bGaaiykaiabgUcaRiaadogadaWgaaWcbaGaam 4CaaqabaGcciGGZbGaaiyAaiaac6gacaGGOaGaeqyYdC3aaSbaaSqa aiaaicdaaeqaaOGaamiDaiaacMcacaGGDbGaey4kaSIaamyyamaaBa aaleaacaWGgbaabeaakiGacogacaGGVbGaai4CaiaacIcacqaHjpWD daWgaaWcbaGaamOraaqabaGccaWG0bGaaiykaiabgUcaRiaackgada WgaaWcbaGaamOraaqabaGccaGGZbGaaiyAaiaac6gacaGGOaGaeqyY dC3aaSbaaSqaaiaadAeaaeqaaOGaamiDaiaacMcaaaa@6DFB@  

(1.6)

The time derivative of the general solution is:     

y ˙ (t)=αexp(αt)[ c c cos( ω 0 t)+ c s sin( ω 0 t)]+ ω 0 exp(αt)[ c c sin( ω 0 t)+ c s cos( ω 0 t)]+ ω F [ a F sin( ω F t)+ b F cos( ω F t] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGabmyEay aacaGaaiikaiaadshacaGGPaGaeyypa0JaeyOeI0IaeqySdeMaciyz aiaacIhacaGGWbGaaiikaiabgkHiTiabeg7aHjaadshacaGGPaGaai 4waiaacogadaWgaaWcbaGaam4yaaqabaGcciGGJbGaai4Baiaacoha caGGOaGaeqyYdC3aaSbaaSqaaiaaicdaaeqaaOGaamiDaiaacMcacq GHRaWkcaWGJbWaaSbaaSqaaiaadohaaeqaaOGaci4CaiaacMgacaGG UbGaaiikaiabeM8a3naaBaaaleaacaaIWaaabeaakiaadshacaGGPa GaaiyxaiabgUcaRiabeM8a3naaBaaaleaacaaIWaaabeaakiGacwga caGG4bGaaiiCaiaacIcacqGHsislcqaHXoqycaWG0bGaaiykaiaacU facqGHsislcaGGJbWaaSbaaSqaaiaadogaaeqaaOGaai4CaiaacMga caGGUbGaaiikaiabeM8a3naaBaaaleaacaaIWaaabeaakiaadshaca GGPaGaey4kaSIaam4yamaaBaaaleaacaWGZbaabeaakiaacogacaGG VbGaai4CaiaacIcacqaHjpWDdaWgaaWcbaGaaGimaaqabaGccaWG0b Gaaiykaiaac2facqGHRaWkaeaacqaHjpWDdaWgaaWcbaGaamOraaqa baGccaGGBbGaeyOeI0IaamyyamaaBaaaleaacaWGgbaabeaakiaaco hacaGGPbGaaiOBaiaacIcacqaHjpWDdaWgaaWcbaGaamOraaqabaGc caWG0bGaaiykaiabgUcaRiaadkgadaWgaaWcbaGaamOraaqabaGcci GGJbGaai4BaiaacohacaGGOaGaeqyYdC3aaSbaaSqaaiaadAeaaeqa aOGaamiDaiaac2faaaaa@982D@   (1.7)

To match initial conditions, we use the values of both y and y ˙ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadMhagaGaaa aa@36F3@  at t=0.

y(0)= c c + a F y ˙ (0)=α c c + ω 0 c s + ω F b F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyEai aacIcacaaIWaGaaiykaiabg2da9iaadogadaWgaaWcbaGaam4yaaqa baGccqGHRaWkcaWGHbWaaSbaaSqaaiaadAeaaeqaaaGcbaGabmyEay aacaGaaiikaiaaicdacaGGPaGaeyypa0JaeyOeI0IaeqySdeMaam4y amaaBaaaleaacaWGJbaabeaakiabgUcaRiabeM8a3naaBaaaleaaca aIWaaabeaakiaadogadaWgaaWcbaGaam4CaaqabaGccqGHRaWkcqaH jpWDdaWgaaWcbaGaamOraaqabaGccaWGIbWaaSbaaSqaaiaadAeaae qaaaaaaa@52CD@  

(1.8)

where both cc and cs have to be solved for.

For generality, I will assume that both y(0) and y ˙ (0) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadMhagaGaai aacIcacaaIWaGaaiykaaaa@3906@  are non-zero and will now solve for the values of constants cc and cs.   Setting up a matrix multiplier for these constants and using equation (1.8) we obtain:

( 1 0 α ω 0 )( c c c s )=( y 0 a F y ˙ 0 ω F b F ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaqbae qabiGaaaqaaiaaigdaaeaacaaIWaaabaGaeyOeI0IaeqySdegabaGa eqyYdC3aaSbaaSqaaiaaicdaaeqaaaaaaOGaayjkaiaawMcaamaabm aabaqbaeqabiqaaaqaaiaadogadaWgaaWcbaGaam4yaaqabaaakeaa caWGJbWaaSbaaSqaaiaadohaaeqaaaaaaOGaayjkaiaawMcaaiabg2 da9maabmaabaqbaeqabiqaaaqaaiaadMhadaWgaaWcbaGaaGimaaqa baGccqGHsislcaWGHbWaaSbaaSqaaiaadAeaaeqaaaGcbaGabmyEay aacaWaaSbaaSqaaiaaicdaaeqaaOGaeyOeI0IaeqyYdC3aaSbaaSqa aiaadAeaaeqaaOGaamOyamaaBaaaleaacaWGgbaabeaaaaaakiaawI cacaGLPaaaaaa@52EC@  

(1.9)

The inverse of a 2x2 matrix is computed by swapping the diagonal elements and negating the off-diagonal elements and then dividing all elements by the determinant of the original matrix.

Multiplying equation (1.9) by the inverse of the matrix on its left we get:                                     

1 ω 0 ( ω 0 0 α 1 )( 1 0 α ω 0 )( c c c s )= 1 ω 0 ( ω 0 0 α 1 )( y 0 a F y ˙ 0 ω F b F ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaaqaaiabeM8a3naaBaaaleaacaaIWaaabeaaaaGcdaqadaqaauaa beqaciaaaeaacqaHjpWDdaWgaaWcbaGaaGimaaqabaaakeaacaaIWa aabaGaeqySdegabaGaaGymaaaaaiaawIcacaGLPaaadaqadaqaauaa beqaciaaaeaacaaIXaaabaGaaGimaaqaaiabgkHiTiabeg7aHbqaai abeM8a3naaBaaaleaacaaIWaaabeaaaaaakiaawIcacaGLPaaadaqa daqaauaabeqaceaaaeaacaWGJbWaaSbaaSqaaiaadogaaeqaaaGcba Gaam4yamaaBaaaleaacaWGZbaabeaaaaaakiaawIcacaGLPaaacqGH 9aqpdaWcaaqaaiaaigdaaeaacqaHjpWDdaWgaaWcbaGaaGimaaqaba aaaOWaaeWaaeaafaqabeGacaaabaGaeqyYdC3aaSbaaSqaaiaaicda aeqaaaGcbaGaaGimaaqaaiabeg7aHbqaaiaaigdaaaaacaGLOaGaay zkaaWaaeWaaeaafaqabeGabaaabaGaamyEamaaBaaaleaacaaIWaaa beaakiabgkHiTiaadggadaWgaaWcbaGaamOraaqabaaakeaaceWG5b GbaiaadaWgaaWcbaGaaGimaaqabaGccqGHsislcqaHjpWDdaWgaaWc baGaamOraaqabaGccaWGIbWaaSbaaSqaaiaadAeaaeqaaaaaaOGaay jkaiaawMcaaaaa@68D0@  

(1.10)

( c c c s )= 1 ω 0 ( ω 0 0 α 1 )( y 0 a F y ˙ 0 ω F b F )=( y 0 a F α ω 0 ( y 0 a F )+ y ˙ 0 ω F b F ω 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaqbae qabiqaaaqaaiaadogadaWgaaWcbaGaam4yaaqabaaakeaacaWGJbWa aSbaaSqaaiaadohaaeqaaaaaaOGaayjkaiaawMcaaiabg2da9maala aabaGaaGymaaqaaiabeM8a3naaBaaaleaacaaIWaaabeaaaaGcdaqa daqaauaabeqaciaaaeaacqaHjpWDdaWgaaWcbaGaaGimaaqabaaake aacaaIWaaabaGaeqySdegabaGaaGymaaaaaiaawIcacaGLPaaadaqa daqaauaabeqaceaaaeaacaWG5bWaaSbaaSqaaiaaicdaaeqaaOGaey OeI0IaamyyamaaBaaaleaacaWGgbaabeaaaOqaaiqadMhagaGaamaa BaaaleaacaaIWaaabeaakiabgkHiTiabeM8a3naaBaaaleaacaWGgb aabeaakiaadkgadaWgaaWcbaGaamOraaqabaaaaaGccaGLOaGaayzk aaGaeyypa0ZaaeWaaeaafaqabeGabaaabaGaamyEamaaBaaaleaaca aIWaaabeaakiabgkHiTiaadggadaWgaaWcbaGaamOraaqabaaakeaa daWcaaqaaiabeg7aHbqaaiabeM8a3naaBaaaleaacaaIWaaabeaaaa GccaGGOaGaamyEamaaBaaaleaacaaIWaaabeaakiabgkHiTiaadgga daWgaaWcbaGaamOraaqabaGccaGGPaGaey4kaSYaaSaaaeaaceWG5b GbaiaadaWgaaWcbaGaaGimaaqabaGccqGHsislcqaHjpWDdaWgaaWc baGaamOraaqabaGccaWGIbWaaSbaaSqaaiaadAeaaeqaaaGcbaGaeq yYdC3aaSbaaSqaaiaaicdaaeqaaaaaaaaakiaawIcacaGLPaaaaaa@72B5@  

(1.11)

                                                                       

We can also express the general solution as cosines only by applying the phase of the ω0 and the ωF terms separately.

y(t)=exp(αt) c 0 cos( ω 0 t+ ϕ 0 )+ c F cos( ω F t+ ϕ F ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMhacaGGOa GaamiDaiaacMcacqGH9aqpciGGLbGaaiiEaiaacchacaGGOaGaeyOe I0IaeqySdeMaamiDaiaacMcacaGGJbWaaSbaaSqaaiaaicdaaeqaaO Gaci4yaiaac+gacaGGZbGaaiikaiabeM8a3naaBaaaleaacaaIWaaa beaakiaadshacqGHRaWkcqaHvpGzdaWgaaWcbaGaaGimaaqabaGcca GGPaGaey4kaSIaam4yamaaBaaaleaacaWGgbaabeaakiGacogacaGG VbGaai4CaiaacIcacqaHjpWDdaWgaaWcbaGaamOraaqabaGccaWG0b Gaey4kaSIaeqy1dy2aaSbaaSqaaiaadAeaaeqaaOGaaiykaaaa@5DB6@  

(1.12)

where:

 

c 0 = c c 2 + c s 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadogadaWgaa WcbaGaaGimaaqabaGccqGH9aqpdaGcaaqaaiaadogadaqhaaWcbaGa am4yaaqaaiaaikdaaaGccqGHRaWkcaWGJbWaa0baaSqaaiaadohaae aacaaIYaaaaaqabaGccaWLa8oaaa@40D9@  

(1.13)

ϕ 0 = tan 1 ( c s c c ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew9aMnaaBa aaleaacaaIWaaabeaakiabg2da9iGacshacaGGHbGaaiOBamaaCaaa leqabaGaeyOeI0IaaGymaaaakmaabmaabaWaaSaaaeaacaWGJbWaaS baaSqaaiaadohaaeqaaaGcbaGaam4yamaaBaaaleaacaWGJbaabeaa aaaakiaawIcacaGLPaaaaaa@440E@  

(1.14)

and

c F = a 2 + b 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadogadaWgaa WcbaGaamOraaqabaGccqGH9aqpdaGcaaqaaiaadggadaahaaWcbeqa aiaaikdaaaGccqGHRaWkcaWGIbWaaWbaaSqabeaacaaIYaaaaaqaba aaaa@3D75@  

(1.15)

ϕ F = tan 1 ( b F a F ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew9aMnaaBa aaleaacaWGgbaabeaakiabg2da9iGacshacaGGHbGaaiOBamaaCaaa leqabaGaeyOeI0IaaGymaaaakmaabmaabaWaaSaaaeaacaWGIbWaaS baaSqaaiaadAeaaeqaaaGcbaGaamyyamaaBaaaleaacaWGgbaabeaa aaaakiaawIcacaGLPaaaaaa@43D2@  

(1.16)