Thermal Engine Cycle Using Ideal Gas

Introduction

            The usual gas thermal engine cycle involves two isothermal excursions along with two adiabatic excursions the last of which returns the working gas to its original pressure and volume as depicted on a plot of pressure versus volume.  In this animation I have chosen to plot internal energy and volume separately versus time.  At the same time I show the motion of the gas particles and piston while plotting these parameters.  I think this removes some of the mystery of how isothermal and adiabatic excursions are achieved.

Figures:

Figure 1: Internal energy, U and Volume, V as a function of time over a complete cycle.  The cycle design adds heat at stage, then expansion at stage 2 back to the original internal energy U0 .  Then the internal energy is reduced by putting the gas in contact with a cooler region.  Finally the gas is compressed back to its original internal energy, volume, and pressure to complete the cycle.  Pressure is labeled P0, P1, P2, P3 and P4 at the various stages of the cycle.  Subscript e stands for expansion and c stands for contraction.

 

 

Figure 2:Animation experiment showing container and piston and gas particles along with plots of internal energy, U (black), pressure, P (blue), integral of Pdh (red) where h is piston height, calculated internal energy (green), UT, and piston height (orange). 

 

Calculation of Energy per Cycle

The ideal gas law is:

PV=cU MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfacaWGwb Gaeyypa0Jaam4yaiaadwfaaaa@3A63@  

(1.1)

where c is a constant that depends on the ratio of heat capacity at constant pressure to that at constant volume.  For simple hard spheres and a 2 dimensional gas like we are considering here c=1 while for a 3 dimensional gas c=2/3.  The actual value of c will not be important in the following calculations since these use only ratios of the quantities of interest.

 

From equation (1.1) we can write the pressures, P, at the various stages of the cycle as:

P 1 = P 0 U 1 U 0 P 2 = P 0 U 1 U 0 V 0 V 1 P 3 = P 0 U 1 U 0 V 0 V 1 U 2 U 0 P 4 = P 0 U 1 U 0 V 0 V 1 U 2 U 0 V 1 V 0 = P 0 U 1 U 2 U 0 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamiuam aaBaaaleaacaaIXaaabeaakiabg2da9iaadcfadaWgaaWcbaGaaGim aaqabaGcdaWcaaqaaiaadwfadaWgaaWcbaGaaGymaaqabaaakeaaca WGvbWaaSbaaSqaaiaaicdaaeqaaaaaaOqaaiaadcfadaWgaaWcbaGa aGOmaaqabaGccqGH9aqpcaWGqbWaaSbaaSqaaiaaicdaaeqaaOWaaS aaaeaacaWGvbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaamyvamaaBaaa leaacaaIWaaabeaaaaGcdaWcaaqaaiaadAfadaWgaaWcbaGaaGimaa qabaaakeaacaWGwbWaaSbaaSqaaiaaigdaaeqaaaaaaOqaaiaadcfa daWgaaWcbaGaaG4maaqabaGccqGH9aqpcaWGqbWaaSbaaSqaaiaaic daaeqaaOWaaSaaaeaacaWGvbWaaSbaaSqaaiaaigdaaeqaaaGcbaGa amyvamaaBaaaleaacaaIWaaabeaaaaGcdaWcaaqaaiaadAfadaWgaa WcbaGaaGimaaqabaaakeaacaWGwbWaaSbaaSqaaiaaigdaaeqaaaaa kmaalaaabaGaamyvamaaBaaaleaacaaIYaaabeaaaOqaaiaadwfada WgaaWcbaGaaGimaaqabaaaaaGcbaGaamiuamaaBaaaleaacaaI0aaa beaakiabg2da9iaadcfadaWgaaWcbaGaaGimaaqabaGcdaWcaaqaai aadwfadaWgaaWcbaGaaGymaaqabaaakeaacaWGvbWaaSbaaSqaaiaa icdaaeqaaaaakmaalaaabaGaamOvamaaBaaaleaacaaIWaaabeaaaO qaaiaadAfadaWgaaWcbaGaaGymaaqabaaaaOWaaSaaaeaacaWGvbWa aSbaaSqaaiaaikdaaeqaaaGcbaGaamyvamaaBaaaleaacaaIWaaabe aaaaGcdaWcaaqaaiaadAfadaWgaaWcbaGaaGymaaqabaaakeaacaWG wbWaaSbaaSqaaiaaicdaaeqaaaaakiabg2da9iaadcfadaWgaaWcba GaaGimaaqabaGcdaWcaaqaaiaadwfadaWgaaWcbaGaaGymaaqabaGc caWGvbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaamyvamaaDaaaleaaca aIWaaabaGaaGOmaaaaaaaaaaa@75A9@  

(1.2)

However, since in stage 4, both the volume and the internal energy are the same as in stage 0, we must conclude:

P 4 = P 0 U 1 U 2 U 0 2 =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamiuam aaBaaaleaacaaI0aaabeaakiabg2da9iaadcfadaWgaaWcbaGaaGim aaqabaaakeaadaWcaaqaaiaadwfadaWgaaWcbaGaaGymaaqabaGcca WGvbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaamyvamaaDaaaleaacaaI WaaabaGaaGOmaaaaaaGccqGH9aqpcaaIXaaaaaa@4275@  

(1.3)

 

( U 0 +d U e )( U 0 d U c ) U 0 2 =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaai ikaiaadwfadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcaWGKbGaamyv amaaBaaaleaacaWGLbaabeaakiaacMcacaGGOaGaamyvamaaBaaale aacaaIWaaabeaakiabgkHiTiaadsgacaWGvbWaaSbaaSqaaiaadoga aeqaaOGaaiykaaqaaiaadwfadaqhaaWcbaGaaGimaaqaaiaaikdaaa aaaOGaeyypa0JaaGymaaaa@481C@  

(1.4)

We can solve for dUc in terms of U0 and dUe

( U 0 +d U e )( U 0 d U c )= U 0 2 (d U e d U c ) U 0 =d U e d U c d U c ( U 0 +d U e )= U 0 d U e d U c = U 0 d U e U 0 +d U e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaaiikai aadwfadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcaWGKbGaamyvamaa BaaaleaacaWGLbaabeaakiaacMcacaGGOaGaamyvamaaBaaaleaaca aIWaaabeaakiabgkHiTiaadsgacaWGvbWaaSbaaSqaaiaadogaaeqa aOGaaiykaiabg2da9iaadwfadaqhaaWcbaGaaGimaaqaaiaaikdaaa aakeaacaGGOaGaamizaiaadwfadaWgaaWcbaGaamyzaaqabaGccqGH sislcaWGKbGaamyvamaaBaaaleaacaWGJbaabeaakiaacMcacaWGvb WaaSbaaSqaaiaaicdaaeqaaOGaeyypa0JaamizaiaadwfadaWgaaWc baGaamyzaaqabaGccaWGKbGaamyvamaaBaaaleaacaWGJbaabeaaaO qaaiaadsgacaWGvbWaaSbaaSqaaiaadogaaeqaaOGaaiikaiaadwfa daWgaaWcbaGaaGimaaqabaGccqGHRaWkcaWGKbGaamyvamaaBaaale aacaWGLbaabeaakiaacMcacqGH9aqpcaWGvbWaaSbaaSqaaiaaicda aeqaaOGaamizaiaadwfadaWgaaWcbaGaamyzaaqabaaakeaacaWGKb GaamyvamaaBaaaleaacaWGJbaabeaakiabg2da9maalaaabaGaamyv amaaBaaaleaacaaIWaaabeaakiaadsgacaWGvbWaaSbaaSqaaiaadw gaaeqaaaGcbaGaamyvamaaBaaaleaacaaIWaaabeaakiabgUcaRiaa dsgacaWGvbWaaSbaaSqaaiaadwgaaeqaaaaaaaaa@759D@  

(1.5)

Since dUe is greater than dUc we deduce, from conservation of energy, that we can obtain macroscopic work

dW=d U e d U c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgacaWGxb Gaeyypa0JaamizaiaadwfadaWgaaWcbaGaamyzaaqabaGccqGHsisl caWGKbGaamyvamaaBaaaleaacaWGJbaabeaaaaa@3F5D@  

(1.6)

from the piston.  The amount of work can be obtained by solving line 2 of equation (1.5) for dUe-dUc

d U e d U c = d U e d U c U 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgacaWGvb WaaSbaaSqaaiaadwgaaeqaaOGaeyOeI0IaamizaiaadwfadaWgaaWc baGaam4yaaqabaGccqGH9aqpdaWcaaqaaiaadsgacaWGvbWaaSbaaS qaaiaadwgaaeqaaOGaamizaiaadwfadaWgaaWcbaGaam4yaaqabaaa keaacaWGvbWaaSbaaSqaaiaaicdaaeqaaaaaaaa@4536@  

(1.7)

The efficiency, η,  of the cycle is the work obtained divided by the amount of heat input during the first part of the cycle:

η= d U e d U c d U e = d U c U 0 = d U e U 0 +d U e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjabg2 da9maalaaabaGaamizaiaadwfadaWgaaWcbaGaamyzaaqabaGccqGH sislcaWGKbGaamyvamaaBaaaleaacaWGJbaabeaaaOqaaiaadsgaca WGvbWaaSbaaSqaaiaadwgaaeqaaaaakiabg2da9maalaaabaGaamiz aiaadwfadaWgaaWcbaGaam4yaaqabaaakeaacaWGvbWaaSbaaSqaai aaicdaaeqaaaaakiabg2da9maalaaabaGaamizaiaadwfadaWgaaWc baGaamyzaaqabaaakeaacaWGvbWaaSbaaSqaaiaaicdaaeqaaOGaey 4kaSIaamizaiaadwfadaWgaaWcbaGaamyzaaqabaaaaaaa@5180@  

(1.8)

Since U is always proportional to temperature we can rewrite equation (1.8) as:

η= T H T 0 T H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjabg2 da9maalaaabaGaamivamaaBaaaleaacaWGibaabeaakiabgkHiTiaa dsfadaWgaaWcbaGaaGimaaqabaaakeaacaWGubWaaSbaaSqaaiaadI eaaeqaaaaaaaa@3F11@  

(1.9)

Where TH is the highest temperature and T0 is the base temperature.  Equation (1.9) is recognizable as the expected relation between efficiency and temperatures.  Note, however, that this treatment never brought up the mystical concept of entropy.

 

Calculation of Internal Energy during Expansion or Contraction

Both the internal energy and the pressure are changing during volume change.  Using equation (1.1) we can write

U= PV c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwfacqGH9a qpdaWcaaqaaiaadcfacaWGwbaabaGaam4yaaaaaaa@3A73@  

(1.10)

U(V)= U 1 V 0 V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwfacaGGOa GaamOvaiaacMcacqGH9aqpcaWGvbWaaSbaaSqaaiaaigdaaeqaaOWa aSaaaeaacaWGwbWaaSbaaSqaaiaaicdaaeqaaaGcbaGaamOvaaaaaa a@3E80@  

(1.11)

where V0 is the starting volume and V is the volume at any part of the volume change phase.  The red plot shows that the internal energy change is proportional to

U(V)U( V 0 )= V 0 V PdV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwfacaGGOa GaamOvaiaacMcacqGHsislcaWGvbGaamikaiaadAfadaWgaaWcbaGa amimaaqabaGccaWGPaGaeyypa0Zaa8qCaeaacaWGqbGaamizaiaadA faaSqaaiaadAfadaWgaaadbaGaaGimaaqabaaaleaacaWGwbaaniab gUIiYdaaaa@4691@  

(1.12)