Hohmann Transfers
Introduction
	This will be a paraphrase of the main reference 1 that I found a little hard to follow.  Figure 1 shows the pertinent variables that will be used.  
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Figure 1: Circular orbits r1 and r2 as well as the elliptical Hohmann transfer orbit.

Obviously the semi-major axis of the ellipse is  .  This means that the energy needed for the elliptical transfer orbit is more than that of the inner orbit and smaller than that of the outer orbit.  The velocity of any circular orbit can be obtained from the requirement that the centripetal force equal the gravitational attraction

	 	
 

[bookmark: ZEqnNum701676]	 	


Where  is the angular rate of the mass m in its orbit, m is its mass, r is the radius of the circular orbit, and GM is the gravitational constant, G, times the mass, M, of the planet at the center of the orbit.  For a circular orbit the speed, v, of mass m is .  We can now evaluate the kinetic energy, E, of the circular orbit using equation 

[bookmark: ZEqnNum108012]	 	
For convenience we will now use specific kinetic energy which is energy per unit mass.
Using equation  we can state the specific energies, e, of the inner and outer circular orbits as 

[bookmark: ZEqnNum353015]	 	
The corresponding speeds of these 2 orbits are

[bookmark: ZEqnNum387214]	 	
For the transfer orbit, conservation of angular momentum requires that

[bookmark: ZEqnNum932632]	 	
Where l is the mass specific angular momentum.
 
At perigee the total specific energy is 

[bookmark: ZEqnNum386571]	 	
And this energy must be the same at the apogee


[bookmark: ZEqnNum929637]	 	


We can multiply equation  by  and equation  by and obtain

	 	

	 	
Dividing both equations by their radii squared we obtain the following:

[bookmark: ZEqnNum986866]	 	

[bookmark: ZEqnNum469522]	 	
We may now set equations  and  equal obtaining

	 	
Now solve for l2

[bookmark: ZEqnNum269718]	 	


Now we use equation  and equation  to solve for vperigee and vapogee .


[bookmark: ZEqnNum568583]	 	 

Equation  is the solution for any elliptical orbit.  For the Hohmann transfer orbit we have referring to Figure 1:

[bookmark: ZEqnNum780927]	 	
The speed change needed for perigee and apogee can be calculated using equations  and equations  

	 	


Here  is the speed change needed to go from the circular orbit of radius r1 to the Hohmann transfer orbit and  is the speed change needed to go from the Hohmann transfer orbit to the  circular orbit of radius r2. These speed changes need to be provided by very short burns when the spacecraft is very near the perigee and apogee, respectively, of the transfer orbit.  Ideally the apogee burn should start a short time before reaching apogee and end at the same short time after apogee.  
The time between the start of the transfer orbit and reaching apogee is the Kepler expression for ½ of an orbital period.

	 	
Now we can write eccentricity as 

	 	
And semi-minor axis, b, as


	 	
Where

	 	
The rate of angular rotation with respect to M is given by

[bookmark: ZEqnNum780931]	 	
Where 

	 	
Finally we can write equation  as

[bookmark: ZEqnNum846123]	 	

 Therefore we can compute the time variation of  and r by numerically integrating equation .  
Having obtained  and r for any time t, we can use the following equations to compute the Cartesian coordinates (x,y).
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