Hohmann Transfers

Introduction

            This will be a paraphrase of the main reference 1 that I found a little hard to follow.  Figure 1 shows the pertinent variables that will be used. 

 

Figure 1: Circular orbits r1 and r2 as well as the elliptical Hohmann transfer orbit.

Obviously the semi-major axis of the ellipse is a= r 1 + r 2 2 MathType@MTEF@5@5@+= feaahiart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggacqGH9a qpdaWcaaqaaiaadkhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWG YbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaaGOmaaaaaaa@3D52@  .  This means that the energy needed for the elliptical transfer orbit is more than that of the inner orbit and smaller than that of the outer orbit.  The velocity of any circular orbit can be obtained from the requirement that the centripetal force equal the gravitational attraction

MathType@MTEF@5@5@+= feaahiart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOaa@35E5@  

(1.1)

 

m ω 2 r= GMm r 2 MathType@MTEF@5@5@+= feaahiart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gacqaHjp WDdaahaaWcbeqaaiaaikdaaaGccaWGYbGaeyypa0ZaaSaaaeaacaWG hbGaamytaiaad2gaaeaacaWGYbWaaWbaaSqabeaacaaIYaaaaaaaaa a@4015@  

(1.2)

Where ω MathType@MTEF@5@5@+= feaahiart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3baa@37B4@  is the angular rate of the mass m in its orbit, m is its mass, r is the radius of the circular orbit, and GM is the gravitational constant, G, times the mass, M, of the planet at the center of the orbit.  For a circular orbit the speed, v, of mass m is v=ωr MathType@MTEF@5@5@+= feaahiart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAhacqGH9a qpcqaHjpWDcaWGYbaaaa@3AAC@ .  We can now evaluate the kinetic energy, E, of the circular orbit using equation (1.2)

E= m v 2 2 = GMm 2r MathType@MTEF@5@5@+= feaahiart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweacqGH9a qpdaWcaaqaaiaad2gacaWG2bWaaWbaaSqabeaacaaIYaaaaaGcbaGa aGOmaaaacqGH9aqpdaWcaaqaaiaadEeacaWGnbGaamyBaaqaaiaaik dacaWGYbaaaaaa@40BB@  

(1.3)

For convenience we will now use specific kinetic energy which is energy per unit mass.

Using equation (1.3) we can state the specific energies, e, of the inner and outer circular orbits as

e 1 = GM 2 r 1 e 2 = GM 2 r 2 MathType@MTEF@5@5@+= feaahiart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyzam aaBaaaleaacaaIXaaabeaakiabg2da9maalaaabaGaam4raiaad2ea aeaacaaIYaGaamOCamaaBaaaleaacaaIXaaabeaaaaaakeaacaWGLb WaaSbaaSqaaiaaikdaaeqaaOGaeyypa0ZaaSaaaeaacaWGhbGaamyt aaqaaiaaikdacaWGYbWaaSbaaSqaaiaaikdaaeqaaaaaaaaa@444B@  

(1.4)

The corresponding speeds of these 2 orbits are

v 1 = GM r 1 v 2 = GM r 2 MathType@MTEF@5@5@+= feaahiart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamODam aaBaaaleaacaaIXaaabeaakiabg2da9maakaaabaWaaSaaaeaacaWG hbGaamytaaqaaiaadkhadaWgaaWcbaGaaGymaaqabaaaaaqabaaake aacaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0ZaaOaaaeaadaWc aaqaaiaadEeacaWGnbaabaGaamOCamaaBaaaleaacaaIYaaabeaaaa aabeaaaaaa@4315@  

(1.5)

For the transfer orbit, conservation of angular momentum requires that

l= r perigee v perigee = r apogee v apogee MathType@MTEF@5@5@+= feaahiart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYgacqGH9a qpcaWGYbWaaSbaaSqaaiaadchacaWGLbGaamOCaiaadMgacaWGNbGa amyzaiaadwgaaeqaaOGaamODamaaBaaaleaacaWGWbGaamyzaiaadk hacaWGPbGaam4zaiaadwgacaWGLbaabeaakiabg2da9iaadkhadaWg aaWcbaGaamyyaiaadchacaWGVbGaam4zaiaadwgacaWGLbaabeaaki aadAhadaWgaaWcbaGaamyyaiaadchacaWGVbGaam4zaiaadwgacaWG Lbaabeaaaaa@55BC@  

(1.6)

Where l is the mass specific angular momentum.

 

At perigee the total specific energy is

e= e perigee = v perigee 2 2 GM r perigee MathType@MTEF@5@5@+= feaahiart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwgacqGH9a qpcaWGLbWaaSbaaSqaaiaadchacaWGLbGaamOCaiaadMgacaWGNbGa amyzaiaadwgaaeqaaOGaeyypa0ZaaSaaaeaacaWG2bWaa0baaSqaai aadchacaWGLbGaamOCaiaadMgacaWGNbGaamyzaiaadwgaaeaacaaI YaaaaaGcbaGaaGOmaaaacqGHsisldaWcaaqaaiaadEeacaWGnbaaba GaamOCamaaBaaaleaacaWGWbGaamyzaiaadkhacaWGPbGaam4zaiaa dwgacaWGLbaabeaaaaaaaa@5400@  

(1.7)

And this energy must be the same at the apogee

 

e= e apogee = v apogee 2 2 GM r apogee MathType@MTEF@5@5@+= feaahiart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwgacqGH9a qpcaWGLbWaaSbaaSqaaiaadggacaWGWbGaam4BaiaadEgacaWGLbGa amyzaaqabaGccqGH9aqpdaWcaaqaaiaadAhadaqhaaWcbaGaamyyai aadchacaWGVbGaam4zaiaadwgacaWGLbaabaGaaGOmaaaaaOqaaiaa ikdaaaGaeyOeI0YaaSaaaeaacaWGhbGaamytaaqaaiaadkhadaWgaa WcbaGaamyyaiaadchacaWGVbGaam4zaiaadwgacaWGLbaabeaaaaaa aa@5121@  

(1.8)

We can multiply equation (1.7) by r perigee 2 MathType@MTEF@5@5@+= feaahiart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhadaqhaa WcbaGaamiCaiaadwgacaWGYbGaamyAaiaadEgacaWGLbGaamyzaaqa aiaaikdaaaaaaa@3E4B@  and equation (1.8) by r apogee 2 MathType@MTEF@5@5@+= feaahiart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhadaqhaa WcbaGaamyyaiaadchacaWGVbGaam4zaiaadwgacaWGLbaabaGaaGOm aaaaaaa@3D56@  and obtain

r perigee 2 e= v perigee 2 r perigee 2 2 GM r perigee = l 2 2 GM r perigee MathType@MTEF@5@5@+= feaahiart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhadaqhaa WcbaGaamiCaiaadwgacaWGYbGaamyAaiaadEgacaWGLbGaamyzaaqa aiaaikdaaaGccaWGLbGaeyypa0ZaaSaaaeaacaWG2bWaa0baaSqaai aadchacaWGLbGaamOCaiaadMgacaWGNbGaamyzaiaadwgaaeaacaaI YaaaaOGaamOCamaaDaaaleaacaWGWbGaamyzaiaadkhacaWGPbGaam 4zaiaadwgacaWGLbaabaGaaGOmaaaaaOqaaiaaikdaaaGaeyOeI0Ia am4raiaad2eacaWGYbWaaSbaaSqaaiaadchacaWGLbGaamOCaiaadM gacaWGNbGaamyzaiaadwgaaeqaaOGaeyypa0ZaaSaaaeaacaWGSbWa aWbaaSqabeaacaaIYaaaaaGcbaGaaGOmaaaacqGHsislcaWGhbGaam ytaiaadkhadaWgaaWcbaGaamiCaiaadwgacaWGYbGaamyAaiaadEga caWGLbGaamyzaaqabaaaaa@6A14@  

(1.9)

r apogee 2 e= v apogee 2 r apogee 2 2 GM r apogee = l 2 2 GM r apogee MathType@MTEF@5@5@+= feaahiart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhadaqhaa WcbaGaamyyaiaadchacaWGVbGaam4zaiaadwgacaWGLbaabaGaaGOm aaaakiaadwgacqGH9aqpdaWcaaqaaiaadAhadaqhaaWcbaGaamyyai aadchacaWGVbGaam4zaiaadwgacaWGLbaabaGaaGOmaaaakiaadkha daqhaaWcbaGaamyyaiaadchacaWGVbGaam4zaiaadwgacaWGLbaaba GaaGOmaaaaaOqaaiaaikdaaaGaeyOeI0Iaam4raiaad2eacaWGYbWa aSbaaSqaaiaadggacaWGWbGaam4BaiaadEgacaWGLbGaamyzaaqaba GccqGH9aqpdaWcaaqaaiaadYgadaahaaWcbeqaaiaaikdaaaaakeaa caaIYaaaaiabgkHiTiaadEeacaWGnbGaamOCamaaBaaaleaacaWGHb GaamiCaiaad+gacaWGNbGaamyzaiaadwgaaeqaaaaa@654B@  

(1.10)

Dividing both equations by their radii squared we obtain the following:

e= l 2 2 r perigee 2 GM r perigee MathType@MTEF@5@5@+= feaahiart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwgacqGH9a qpdaWcaaqaaiaadYgadaahaaWcbeqaaiaaikdaaaaakeaacaaIYaGa amOCamaaDaaaleaacaWGWbGaamyzaiaadkhacaWGPbGaam4zaiaadw gacaWGLbaabaGaaGOmaaaaaaGccqGHsisldaWcaaqaaiaadEeacaWG nbaabaGaamOCamaaBaaaleaacaWGWbGaamyzaiaadkhacaWGPbGaam 4zaiaadwgacaWGLbaabeaaaaaaaa@4D36@  

(1.11)

e= l 2 2 r apogee 2 GM r apogee MathType@MTEF@5@5@+= feaahiart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwgacqGH9a qpdaWcaaqaaiaadYgadaahaaWcbeqaaiaaikdaaaaakeaacaaIYaGa amOCamaaDaaaleaacaWGHbGaamiCaiaad+gacaWGNbGaamyzaiaadw gaaeaacaaIYaaaaaaakiabgkHiTmaalaaabaGaam4raiaad2eaaeaa caWGYbWaaSbaaSqaaiaadggacaWGWbGaam4BaiaadEgacaWGLbGaam yzaaqabaaaaaaa@4B4C@  

(1.12)

We may now set equations (1.11) and (1.12) equal obtaining

l 2 2 r perigee 2 GM r perigee = l 2 2 r apogee 2 GM r apogee MathType@MTEF@5@5@+= feaahiart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam iBamaaCaaaleqabaGaaGOmaaaaaOqaaiaaikdacaWGYbWaa0baaSqa aiaadchacaWGLbGaamOCaiaadMgacaWGNbGaamyzaiaadwgaaeaaca aIYaaaaaaakiabgkHiTmaalaaabaGaam4raiaad2eaaeaacaWGYbWa aSbaaSqaaiaadchacaWGLbGaamOCaiaadMgacaWGNbGaamyzaiaadw gaaeqaaaaakiabg2da9maalaaabaGaamiBamaaCaaaleqabaGaaGOm aaaaaOqaaiaaikdacaWGYbWaa0baaSqaaiaadggacaWGWbGaam4Bai aadEgacaWGLbGaamyzaaqaaiaaikdaaaaaaOGaeyOeI0YaaSaaaeaa caWGhbGaamytaaqaaiaadkhadaWgaaWcbaGaamyyaiaadchacaWGVb Gaam4zaiaadwgacaWGLbaabeaaaaaaaa@5FCC@  

(1.13)

Now solve for l2

l 2 =2GM ( 1 r perigee 1 r apogee ) ( 1 r perigee 2 1 r apogee 2 ) =2GM r perigee r apogee ( r apogee r perigee ) ( r apogee 2 r perigee 2 ) = 2GM r perigee r apogee r apogee + r perigee MathType@MTEF@5@5@+= feaahiart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYgadaahaa WcbeqaaiaaikdaaaGccqGH9aqpcaaIYaGaam4raiaad2eadaWcaaqa amaabmaabaWaaSaaaeaacaaIXaaabaGaamOCamaaBaaaleaacaWGWb GaamyzaiaadkhacaWGPbGaam4zaiaadwgacaWGLbaabeaaaaGccqGH sisldaWcaaqaaiaaigdaaeaacaWGYbWaaSbaaSqaaiaadggacaWGWb Gaam4BaiaadEgacaWGLbGaamyzaaqabaaaaaGccaGLOaGaayzkaaaa baWaaeWaaeaadaWcaaqaaiaaigdaaeaacaWGYbWaa0baaSqaaiaadc hacaWGLbGaamOCaiaadMgacaWGNbGaamyzaiaadwgaaeaacaaIYaaa aaaakiabgkHiTmaalaaabaGaaGymaaqaaiaadkhadaqhaaWcbaGaam yyaiaadchacaWGVbGaam4zaiaadwgacaWGLbaabaGaaGOmaaaaaaaa kiaawIcacaGLPaaaaaGaeyypa0JaaGOmaiaadEeacaWGnbWaaSaaae aacaWGYbWaaSbaaSqaaiaadchacaWGLbGaamOCaiaadMgacaWGNbGa amyzaiaadwgaaeqaaOGaamOCamaaBaaaleaacaWGHbGaamiCaiaad+ gacaWGNbGaamyzaiaadwgacaaMc8oabeaakiaacIcacaWGYbWaaSba aSqaaiaadggacaWGWbGaam4BaiaadEgacaWGLbGaamyzaaqabaGccq GHsislcaWGYbWaaSbaaSqaaiaadchacaWGLbGaamOCaiaadMgacaWG NbGaamyzaiaadwgaaeqaaOGaaiykaaqaaiaacIcacaWGYbWaa0baaS qaaiaadggacaWGWbGaam4BaiaadEgacaWGLbGaamyzaaqaaiaaikda aaGccqGHsislcaWGYbWaa0baaSqaaiaadchacaWGLbGaamOCaiaadM gacaWGNbGaamyzaiaadwgaaeaacaaIYaaaaOGaaiykaaaacqGH9aqp daWcaaqaaiaaikdacaWGhbGaamytaiaadkhadaWgaaWcbaGaamiCai aadwgacaWGYbGaamyAaiaadEgacaWGLbGaamyzaaqabaGccaWGYbWa aSbaaSqaaiaadggacaWGWbGaam4BaiaadEgacaWGLbGaamyzaiaayk W7aeqaaaGcbaGaamOCamaaBaaaleaacaWGHbGaamiCaiaad+gacaWG NbGaamyzaiaadwgaaeqaaOGaey4kaSIaamOCamaaBaaaleaacaWGWb GaamyzaiaadkhacaWGPbGaam4zaiaadwgacaWGLbaabeaaaaaaaa@BA9B@  

(1.14)

 

 

Now we use equation (1.6) and equation (1.14) to solve for vperigee and vapogee .

                                               v perigee = 2GM r apogee r perigee ( r perigee + r apogee ) v apogee = 2GM r perigee r apogee ( r perigee + r apogee ) MathType@MTEF@5@5@+= feaahiart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamODam aaBaaaleaacaWGWbGaamyzaiaadkhacaWGPbGaam4zaiaadwgacaWG Lbaabeaakiabg2da9maakaaabaWaaSaaaeaacaaIYaGaam4raiaad2 eacaWGYbWaaSbaaSqaaiaadggacaWGWbGaam4BaiaadEgacaWGLbGa amyzaaqabaaakeaacaWGYbWaaSbaaSqaaiaadchacaWGLbGaamOCai aadMgacaWGNbGaamyzaiaadwgaaeqaaOGaaiikaiaadkhadaWgaaWc baGaamiCaiaadwgacaWGYbGaamyAaiaadEgacaWGLbGaamyzaaqaba GccqGHRaWkcaWGYbWaaSbaaSqaaiaadggacaWGWbGaam4BaiaadEga caWGLbGaamyzaaqabaGccaGGPaaaaaWcbeaaaOqaaiaadAhadaWgaa WcbaGaamyyaiaadchacaWGVbGaam4zaiaadwgacaWGLbaabeaakiab g2da9maakaaabaWaaSaaaeaacaaIYaGaam4raiaad2eacaWGYbWaaS baaSqaaiaadchacaWGLbGaamOCaiaadMgacaWGNbGaamyzaiaadwga aeqaaaGcbaGaamOCamaaBaaaleaacaWGHbGaamiCaiaad+gacaWGNb GaamyzaiaadwgaaeqaaOGaaiikaiaadkhadaWgaaWcbaGaamiCaiaa dwgacaWGYbGaamyAaiaadEgacaWGLbGaamyzaaqabaGccqGHRaWkca WGYbWaaSbaaSqaaiaadggacaWGWbGaam4BaiaadEgacaWGLbGaamyz aaqabaGccaGGPaaaaaWcbeaaaaaa@89AC@                                 δ v 1 MathType@MTEF@5@5@+= feaahiart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaadA hadaWgaaWcbaGaaGymaiaaykW7aeqaaaaa@3AF9@  (1.15)

 

Equation (1.15) is the solution for any elliptical orbit.  For the Hohmann transfer orbit we have referring to Figure 1:

v perigee = 2GM r 2 r 1 ( r 1 + r 2 ) v apogee = 2GM r 1 r 2 ( r 1 + r 2 ) MathType@MTEF@5@5@+= feaahiart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamODam aaBaaaleaacaWGWbGaamyzaiaadkhacaWGPbGaam4zaiaadwgacaWG Lbaabeaakiabg2da9maakaaabaWaaSaaaeaacaaIYaGaam4raiaad2 eacaWGYbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaamOCamaaBaaaleaa caaIXaaabeaakiaacIcacaWGYbWaaSbaaSqaaiaaigdaaeqaaOGaey 4kaSIaamOCamaaBaaaleaacaaIYaaabeaakiaacMcaaaaaleqaaaGc baGaamODamaaBaaaleaacaWGHbGaamiCaiaad+gacaWGNbGaamyzai aadwgaaeqaaOGaeyypa0ZaaOaaaeaadaWcaaqaaiaaikdacaWGhbGa amytaiaadkhadaWgaaWcbaGaaGymaaqabaaakeaacaWGYbWaaSbaaS qaaiaaikdaaeqaaOGaaiikaiaadkhadaWgaaWcbaGaaGymaaqabaGc cqGHRaWkcaWGYbWaaSbaaSqaaiaaikdaaeqaaOGaaiykaaaaaSqaba aaaaa@5F3C@  

(1.16)

The speed change needed for perigee and apogee can be calculated using equations (1.5) and equations (1.16)

δ v 1 = 2GM r 2 r 1 ( r 1 + r 2 ) GM r 1 = GM r 1 ( 2 r 2 r 1 + r 2 1 ) δ v 2 = GM r 2 2GM r 1 r 2 ( r 1 + r 2 ) = GM r 2 ( 1 2 r 1 r 1 + r 2 ) MathType@MTEF@5@5@+= feaahiart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeqiTdq MaamODamaaBaaaleaacaaIXaaabeaakiabg2da9maakaaabaWaaSaa aeaacaaIYaGaam4raiaad2eacaWGYbWaaSbaaSqaaiaaikdaaeqaaa GcbaGaamOCamaaBaaaleaacaaIXaaabeaakiaacIcacaWGYbWaaSba aSqaaiaaigdaaeqaaOGaey4kaSIaamOCamaaBaaaleaacaaIYaaabe aakiaacMcaaaaaleqaaOGaeyOeI0YaaOaaaeaadaWcaaqaaiaadEea caWGnbaabaGaamOCamaaBaaaleaacaaIXaaabeaaaaaabeaakiabg2 da9maakaaabaWaaSaaaeaacaWGhbGaamytaaqaaiaadkhadaWgaaWc baGaaGymaaqabaaaaaqabaGcdaqadaqaamaalaaabaGaaGOmaiaadk hadaWgaaWcbaGaaGOmaaqabaaakeaacaWGYbWaaSbaaSqaaiaaigda aeqaaOGaey4kaSIaamOCamaaBaaaleaacaaIYaaabeaaaaGccqGHsi slcaaIXaaacaGLOaGaayzkaaaabaGaeqiTdqMaamODamaaBaaaleaa caaIYaaabeaakiabg2da9maakaaabaWaaSaaaeaacaWGhbGaamytaa qaaiaadkhadaWgaaWcbaGaaGOmaaqabaaaaaqabaGccqGHsisldaGc aaqaamaalaaabaGaaGOmaiaadEeacaWGnbGaamOCamaaBaaaleaaca aIXaaabeaaaOqaaiaadkhadaWgaaWcbaGaaGOmaaqabaGccaGGOaGa amOCamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadkhadaWgaaWcba GaaGOmaaqabaGccaGGPaaaaaWcbeaakiabg2da9maakaaabaWaaSaa aeaacaWGhbGaamytaaqaaiaadkhadaWgaaWcbaGaaGOmaaqabaaaaa qabaGcdaqadaqaaiaaigdacqGHsisldaWcaaqaaiaaikdacaWGYbWa aSbaaSqaaiaaigdaaeqaaaGcbaGaamOCamaaBaaaleaacaaIXaaabe aakiabgUcaRiaadkhadaWgaaWcbaGaaGOmaaqabaaaaaGccaGLOaGa ayzkaaaaaaa@7FA5@  

(1.17)

Here δ v 1 MathType@MTEF@5@5@+= feaahiart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaadA hadaWgaaWcbaGaaGymaaqabaaaaa@396E@  is the speed change needed to go from the circular orbit of radius r1 to the Hohmann transfer orbit and δ v 2 MathType@MTEF@5@5@+= feaahiart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaadA hadaWgaaWcbaGaaGOmaaqabaaaaa@396F@  is the speed change needed to go from the Hohmann transfer orbit to the  circular orbit of radius r2. These speed changes need to be provided by very short burns when the spacecraft is very near the perigee and apogee, respectively, of the transfer orbit.  Ideally the apogee burn should start a short time before reaching apogee and end at the same short time after apogee. 

The time between the start of the transfer orbit and reaching apogee is the Kepler expression for ½ MathType@MTEF@5@5@+= feaahiart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzagaeaa aaaaaaa8qacaWF9caaaa@383D@  of an orbital period.

T= π ( r 1 + r 2 ) 3 2 GM MathType@MTEF@5@5@+= feaahiart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfacqGH9a qpdaWcaaqaaiabec8aWjaacIcacaWGYbWaaSbaaSqaaiaaigdaaeqa aOGaey4kaSIaamOCamaaBaaaleaacaaIYaaabeaakiaacMcadaahaa WcbeqaamaalaaabaGaaG4maaqaaiaaikdaaaaaaaGcbaWaaOaaaeaa caWGhbGaamytaaWcbeaaaaaaaa@4317@  

(1.18)

Now we can write eccentricity as

ε= r 2 r 1 1 r 2 r 1 +1 MathType@MTEF@5@5@+= feaahiart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew7aLjabg2 da9maalaaabaWaaSaaaeaacaWGYbWaaSbaaSqaaiaaikdaaeqaaaGc baGaamOCamaaBaaaleaacaaIXaaabeaaaaGccqGHsislcaaIXaaaba WaaSaaaeaacaWGYbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaamOCamaa BaaaleaacaaIXaaabeaaaaGccqGHRaWkcaaIXaaaaaaa@43AA@  

(1.19)

And semi-minor axis, b, as

 

b=a 1 ε 2 MathType@MTEF@5@5@+= feaahiart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkgacqGH9a qpcaWGHbWaaOaaaeaacaaIXaGaeyOeI0IaeqyTdu2aaWbaaSqabeaa caaIYaaaaaqabaaaaa@3D01@  

(1.20)

Where

a= r 1 + r 2 2 MathType@MTEF@5@5@+= feaahiart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggacqGH9a qpdaWcaaqaaiaadkhadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWG YbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaaGOmaaaaaaa@3D51@  

(1.21)

The rate of angular rotation with respect to M is given by

ω= 2πab T r 2 MathType@MTEF@5@5@+= feaahiart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3jabg2 da9maalaaabaGaaGOmaiabec8aWjaadggacaWGIbaabaGaamivaiaa dkhadaahaaWcbeqaaiaaikdaaaaaaaaa@3FC8@  

(1.22)

Where

r=a 1 e 2 1+ecosθ MathType@MTEF@5@5@+= feaahiart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhacqGH9a qpcaWGHbWaaSaaaeaacaaIXaGaeyOeI0IaamyzamaaCaaaleqabaGa aGOmaaaaaOqaaiaaigdacqGHRaWkcaWGLbGaci4yaiaac+gacaGGZb GaeqiUdehaaaaa@436E@  

(1.23)

Finally we can write equation (1.22) as

ω= dθ dt = GM [a(1 ε 2 )] 3 2 ( 1+εcosθ ) 2 MathType@MTEF@5@5@+= feaahiart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3jabg2 da9maalaaabaGaamizaiabeI7aXbqaaiaadsgacaWG0baaaiabg2da 9maalaaabaWaaOaaaeaacaWGhbGaamytaaWcbeaaaOqaaiaacUfaca WGHbGaaiikaiaaigdacqGHsislcqaH1oqzdaahaaWcbeqaaiaaikda aaGccaGGPaGaaiyxamaaCaaaleqabaWaaSaaaeaacaaIZaaabaGaaG OmaaaaaaaaaOWaaeWaaeaacaaIXaGaey4kaSIaeqyTduMaci4yaiaa c+gacaGGZbGaeqiUdehacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYa aaaaaa@5463@  

(1.24)

 

 Therefore we can compute the time variation of θ and r by numerically integrating equation (1.24)

Having obtained θ and r for any time t, we can use the following equations to compute the Cartesian coordinates (x,y).

x=rcosθ y=rsinθ MathType@MTEF@5@5@+= feaahiart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamiEai abg2da9iaadkhaciGGJbGaai4BaiaacohacqaH4oqCaeaacaWG5bGa eyypa0JaamOCaiGacohacaGGPbGaaiOBaiabeI7aXbaaaa@44F9@  

(1.25)