Improvement in Jacobi Matrix Transforms

Since the Jacobi matrix is mostly zero, we can save some computer time by avoiding fetching the elements that are zero and multiplying them.  The following documents how to do that.  First we look at multiplication from the left in a 3x3 matrix.

( c 0 s 0 1 0 s 0 c )( a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 )=( c a 11 +s a 31 c a 12 +s a 32 c a 13 +s a 33 a 21 a 22 a 23 c a 31 s a 11 c a 32 s a 12 c a 33 s a 13 )= ( a 11 +(c1) a 11 +s a 31 a 12 +(c1) a 12 +s a 32 a 13 +(c1) a 13 +s a 33 a 21 a 22 a 23 a 31 +(c1) a 31 s a 11 a 32 +(c1) a 32 s a 12 a 33 +(c1) a 33 s a 13 )= ( a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 )+( (c1) a 11 +s a 31 (c1) a 12 +s a 32 (c1) a 13 +s a 33 0 0 0 (c1) a 31 s a 11 (c1) a 32 s a 12 (c1) a 33 s a 13 ) MathType@MTEF@5@5@+= feaahiart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaWaaeWaae aafaqabeWadaaabaGaam4yaaqaaiaaicdaaKazaakabaGaam4CaaGc baGaaGimaaqaaiaaigdaaeaacaaIWaaajqgaGcqaaiabgkHiTiaado haaOqaaiaaicdaaeaacaWGJbaaaaGaayjkaiaawMcaamaabmaabaqb aeqabmWaaaqaaiaadggadaWgaaWcbaGaaGymaiaaigdaaeqaaaGcba GaamyyamaaBaaaleaacaaIXaGaaGOmaaqabaaakeaacaWGHbWaaSba aSqaaiaaigdacaaIZaaabeaaaOqaaiaadggadaWgaaWcbaGaaGOmai aaigdaaeqaaaGcbaGaamyyamaaBaaaleaacaaIYaGaaGOmaaqabaaa keaacaWGHbWaaSbaaSqaaiaaikdacaaIZaaabeaaaOqaaiaadggada WgaaWcbaGaaG4maiaaigdaaeqaaaGcbaGaamyyamaaBaaaleaacaaI ZaGaaGOmaaqabaaakeaacaWGHbWaaSbaaSqaaiaaiodacaaIZaaabe aaaaaakiaawIcacaGLPaaacqGH9aqpdaqadaqaauaabeqadmaaaeaa caWGJbGaamyyamaaBaaaleaacaaIXaGaaGymaaqabaGccqGHRaWkca WGZbGaamyyamaaBaaaleaacaaIZaGaaGymaaqabaaakeaacaWGJbGa amyyamaaBaaaleaacaaIXaGaaGOmaaqabaGccqGHRaWkcaWGZbGaam yyamaaBaaaleaacaaIZaGaaGOmaaqabaaakeaacaWGJbGaamyyamaa BaaaleaacaaIXaGaaG4maaqabaGccqGHRaWkcaWGZbGaamyyamaaBa aaleaacaaIZaGaaG4maaqabaaakeaacaWGHbWaaSbaaSqaaiaaikda caaIXaaabeaaaOqaaiaadggadaWgaaWcbaGaaGOmaiaaikdaaeqaaa GcbaGaamyyamaaBaaaleaacaaIYaGaaG4maaqabaaakeaacaWGJbGa amyyamaaBaaaleaacaaIZaGaaGymaaqabaGccqGHsislcaWGZbGaam yyamaaBaaaleaacaaIXaGaaGymaaqabaaakeaacaWGJbGaamyyamaa BaaaleaacaaIZaGaaGOmaaqabaGccqGHsislcaWGZbGaamyyamaaBa aaleaacaaIXaGaaGOmaaqabaaakeaacaWGJbGaamyyamaaBaaaleaa caaIZaGaaG4maaqabaGccqGHsislcaWGZbGaamyyamaaBaaaleaaca aIXaGaaG4maaqabaaaaaGccaGLOaGaayzkaaGaeyypa0dabaWaaeWa aeaafaqabeWadaaabaGaamyyamaaBaaaleaacaaIXaGaaGymaaqaba GccqGHRaWkcaGGOaGaam4yaiabgkHiTiaaigdacaGGPaGaamyyamaa BaaaleaacaaIXaGaaGymaaqabaGccqGHRaWkcaWGZbGaamyyamaaBa aaleaacaaIZaGaaGymaaqabaaakeaacaWGHbWaaSbaaSqaaiaaigda caaIYaaabeaakiabgUcaRiaacIcacaWGJbGaeyOeI0IaaGymaiaacM cacaWGHbWaaSbaaSqaaiaaigdacaaIYaaabeaakiabgUcaRiaadoha caWGHbWaaSbaaSqaaiaaiodacaaIYaaabeaaaOqaaiaadggadaWgaa WcbaGaaGymaiaaiodaaeqaaOGaey4kaSIaaiikaiaadogacqGHsisl caaIXaGaaiykaiaadggadaWgaaWcbaGaaGymaiaaiodaaeqaaOGaey 4kaSIaam4CaiaadggadaWgaaWcbaGaaG4maiaaiodaaeqaaaGcbaGa amyyamaaBaaaleaacaaIYaGaaGymaaqabaaakeaacaWGHbWaaSbaaS qaaiaaikdacaaIYaaabeaaaOqaaiaadggadaWgaaWcbaGaaGOmaiaa iodaaeqaaaGcbaGaamyyamaaBaaaleaacaaIZaGaaGymaaqabaGccq GHRaWkcaGGOaGaam4yaiabgkHiTiaaigdacaGGPaGaamyyamaaBaaa leaacaaIZaGaaGymaaqabaGccqGHsislcaWGZbGaamyyamaaBaaale aacaaIXaGaaGymaaqabaaakeaacaWGHbWaaSbaaSqaaiaaiodacaaI YaaabeaakiabgUcaRiaacIcacaWGJbGaeyOeI0IaaGymaiaacMcaca WGHbWaaSbaaSqaaiaaiodacaaIYaaabeaakiabgkHiTiaadohacaWG HbWaaSbaaSqaaiaaigdacaaIYaaabeaaaOqaaiaadggadaWgaaWcba GaaG4maiaaiodaaeqaaOGaey4kaSIaaiikaiaadogacqGHsislcaaI XaGaaiykaiaadggadaWgaaWcbaGaaG4maiaaiodaaeqaaOGaeyOeI0 Iaam4CaiaadggadaWgaaWcbaGaaGymaiaaiodaaeqaaaaaaOGaayjk aiaawMcaaiabg2da9aqaamaabmaabaqbaeqabmWaaaqaaiaadggada WgaaWcbaGaaGymaiaaigdaaeqaaaGcbaGaamyyamaaBaaaleaacaaI XaGaaGOmaaqabaaakeaacaWGHbWaaSbaaSqaaiaaigdacaaIZaaabe aaaOqaaiaadggadaWgaaWcbaGaaGOmaiaaigdaaeqaaaGcbaGaamyy amaaBaaaleaacaaIYaGaaGOmaaqabaaakeaacaWGHbWaaSbaaSqaai aaikdacaaIZaaabeaaaOqaaiaadggadaWgaaWcbaGaaG4maiaaigda aeqaaaGcbaGaamyyamaaBaaaleaacaaIZaGaaGOmaaqabaaakeaaca WGHbWaaSbaaSqaaiaaiodacaaIZaaabeaaaaaakiaawIcacaGLPaaa cqGHRaWkdaqadaqaauaabeqadmaaaeaacaGGOaGaam4yaiabgkHiTi aaigdacaGGPaGaamyyamaaBaaaleaacaaIXaGaaGymaaqabaGccqGH RaWkcaWGZbGaamyyamaaBaaaleaacaaIZaGaaGymaaqabaaakeaaca GGOaGaam4yaiabgkHiTiaaigdacaGGPaGaamyyamaaBaaaleaacaaI XaGaaGOmaaqabaGccqGHRaWkcaWGZbGaamyyamaaBaaaleaacaaIZa GaaGOmaaqabaaakeaacaGGOaGaam4yaiabgkHiTiaaigdacaGGPaGa amyyamaaBaaaleaacaaIXaGaaG4maaqabaGccqGHRaWkcaWGZbGaam yyamaaBaaaleaacaaIZaGaaG4maaqabaaakeaacaaIWaaabaGaaGim aaqaaiaaicdaaeaacaGGOaGaam4yaiabgkHiTiaaigdacaGGPaGaam yyamaaBaaaleaacaaIZaGaaGymaaqabaGccqGHsislcaWGZbGaamyy amaaBaaaleaacaaIXaGaaGymaaqabaaakeaacaGGOaGaam4yaiabgk HiTiaaigdacaGGPaGaamyyamaaBaaaleaacaaIZaGaaGOmaaqabaGc cqGHsislcaWGZbGaamyyamaaBaaaleaacaaIXaGaaGOmaaqabaaake aacaGGOaGaam4yaiabgkHiTiaaigdacaGGPaGaamyyamaaBaaaleaa caaIZaGaaG4maaqabaGccqGHsislcaWGZbGaamyyamaaBaaaleaaca aIXaGaaG4maaqabaaaaaGccaGLOaGaayzkaaaaaaa@55D5@  

(1.1)

Note that only two rows are modified even for an nxn matrix.  So we just compute those two rows and add them to A.

If c and s are in the 1st and 3rd rows, then, for the 1st  row, we multiply the first row by (c-1) and multiply the third row by s and add these two colums,  For the third row we multiply the third row by (c-1) and the first row by MathType@MTEF@5@5@+= feaahiart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzagaeaa aaaaaaa8qacaWFtacaaa@37B3@ s and add these two rows.

Translating this to a larger matrix when c,s are in the i,j rows, for the ith row, we multiply the ith row by (c-1) and the jth row by s and add.  For the jth row, we multiply the jth row by (c-1) and the ith row by MathType@MTEF@5@5@+= feaahiart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzagaeaa aaaaaaa8qacaWFtacaaa@37B3@ s and then add these two rows.  

 

Then we add the resulting two rows to the ith and jth rows of A and that becomes the result for this matrix multiplication.

Next consider the multiplication of matrix A times the right side Jacobi matrix.

( a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 )( c 0 s 0 1 0 s 0 c )=( a 11 c+ a 13 s a 12 a 13 c a 11 s a 21 c+ a 23 s a 22 a 23 c a 21 s a 31 c+ a 33 s a 32 a 31 s+ a 33 c )= ( a 11 + a 11 (c1)+ a 13 s a 12 a 13 + a 13 (c1) a 11 s a 21 + a 21 (c1)+ a 23 s a 22 a 23 + a 23 (c1) a 21 s a 31 + a 31 (c1)+ a 33 s a 32 a 33 a 31 s+ a 33 (c1) )= ( a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 )+( a 11 (c1)+ a 13 s 0 a 13 (c1) a 11 s a 21 (c1)+ a 23 s 0 a 23 (c1) a 21 s a 31 (c1)+ a 33 s 0 a 33 (c1) a 31 s ) MathType@MTEF@5@5@+= feaahiart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaWaaeWaae aafaqabeWadaaabaGaamyyamaaBaaaleaacaaIXaGaaGymaaqabaaa keaacaWGHbWaaSbaaSqaaiaaigdacaaIYaaabeaaaOqaaiaadggada WgaaWcbaGaaGymaiaaiodaaeqaaaGcbaGaamyyamaaBaaaleaacaaI YaGaaGymaaqabaaakeaacaWGHbWaaSbaaSqaaiaaikdacaaIYaaabe aaaOqaaiaadggadaWgaaWcbaGaaGOmaiaaiodaaeqaaaGcbaGaamyy amaaBaaaleaacaaIZaGaaGymaaqabaaakeaacaWGHbWaaSbaaSqaai aaiodacaaIYaaabeaaaOqaaiaadggadaWgaaWcbaGaaG4maiaaioda aeqaaaaaaOGaayjkaiaawMcaamaabmaabaqbaeqabmWaaaqaaiaado gaaeaacaaIWaaajqgaGcqaaiabgkHiTiaadohaaOqaaiaaicdaaeaa caaIXaaabaGaaGimaaqcKbaOaeaacaWGZbaakeaacaaIWaaabaGaam 4yaaaaaiaawIcacaGLPaaacqGH9aqpdaqadaqaauaabeqadmaaaeaa caWGHbWaaSbaaSqaaiaaigdacaaIXaaabeaakiaadogacqGHRaWkca WGHbWaaSbaaSqaaiaaigdacaaIZaaabeaakiaadohaaeaacaWGHbWa aSbaaSqaaiaaigdacaaIYaaabeaaaOqaaiaadggadaWgaaWcbaGaaG ymaiaaiodaaeqaaOGaam4yaiabgkHiTiaadggadaWgaaWcbaGaaGym aiaaigdaaeqaaOGaam4CaaqaaiaadggadaWgaaWcbaGaaGOmaiaaig daaeqaaOGaam4yaiabgUcaRiaadggadaWgaaWcbaGaaGOmaiaaioda aeqaaOGaam4CaaqaaiaadggadaWgaaWcbaGaaGOmaiaaikdaaeqaaa GcbaGaamyyamaaBaaaleaacaaIYaGaaG4maaqabaGccaWGJbGaeyOe I0IaamyyamaaBaaaleaacaaIYaGaaGymaaqabaGccaWGZbaabaGaam yyamaaBaaaleaacaaIZaGaaGymaaqabaGccaWGJbGaey4kaSIaamyy amaaBaaaleaacaaIZaGaaG4maaqabaGccaWGZbaabaGaamyyamaaBa aaleaacaaIZaGaaGOmaaqabaaakeaacqGHsislcaWGHbWaaSbaaSqa aiaaiodacaaIXaaabeaakiaadohacqGHRaWkcaWGHbWaaSbaaSqaai aaiodacaaIZaaabeaakiaadogaaaaacaGLOaGaayzkaaGaeyypa0da baWaaeWaaeaafaqabeWadaaabaGaamyyamaaBaaaleaacaaIXaGaaG ymaaqabaGccqGHRaWkcaWGHbWaaSbaaSqaaiaaigdacaaIXaaabeaa kiaacIcacaWGJbGaeyOeI0IaaGymaiaacMcacqGHRaWkcaWGHbWaaS baaSqaaiaaigdacaaIZaaabeaakiaadohaaeaacaWGHbWaaSbaaSqa aiaaigdacaaIYaaabeaaaOqaaiaadggadaWgaaWcbaGaaGymaiaaio daaeqaaOGaey4kaSIaamyyamaaBaaaleaacaaIXaGaaG4maaqabaGc caGGOaGaam4yaiabgkHiTiaaigdacaGGPaGaeyOeI0IaamyyamaaBa aaleaacaaIXaGaaGymaaqabaGccaWGZbaabaGaamyyamaaBaaaleaa caaIYaGaaGymaaqabaGccqGHRaWkcaWGHbWaaSbaaSqaaiaaikdaca aIXaaabeaakiaacIcacaWGJbGaeyOeI0IaaGymaiaacMcacqGHRaWk caWGHbWaaSbaaSqaaiaaikdacaaIZaaabeaakiaadohaaeaacaWGHb WaaSbaaSqaaiaaikdacaaIYaaabeaaaOqaaiaadggadaWgaaWcbaGa aGOmaiaaiodaaeqaaOGaey4kaSIaamyyamaaBaaaleaacaaIYaGaaG 4maaqabaGccaGGOaGaam4yaiabgkHiTiaaigdacaGGPaGaeyOeI0Ia amyyamaaBaaaleaacaaIYaGaaGymaaqabaGccaWGZbaabaGaamyyam aaBaaaleaacaaIZaGaaGymaaqabaGccqGHRaWkcaWGHbWaaSbaaSqa aiaaiodacaaIXaaabeaakiaacIcacaWGJbGaeyOeI0IaaGymaiaacM cacqGHRaWkcaWGHbWaaSbaaSqaaiaaiodacaaIZaaabeaakiaadoha aeaacaWGHbWaaSbaaSqaaiaaiodacaaIYaaabeaaaOqaaiaadggada WgaaWcbaGaaG4maiaaiodaaeqaaOGaeyOeI0IaamyyamaaBaaaleaa caaIZaGaaGymaaqabaGccaWGZbGaey4kaSIaamyyamaaBaaaleaaca aIZaGaaG4maaqabaGccaGGOaGaam4yaiabgkHiTiaaigdacaGGPaaa aaGaayjkaiaawMcaaiabg2da9aqaamaabmaabaqbaeqabmWaaaqaai aadggadaWgaaWcbaGaaGymaiaaigdaaeqaaaGcbaGaamyyamaaBaaa leaacaaIXaGaaGOmaaqabaaakeaacaWGHbWaaSbaaSqaaiaaigdaca aIZaaabeaaaOqaaiaadggadaWgaaWcbaGaaGOmaiaaigdaaeqaaaGc baGaamyyamaaBaaaleaacaaIYaGaaGOmaaqabaaakeaacaWGHbWaaS baaSqaaiaaikdacaaIZaaabeaaaOqaaiaadggadaWgaaWcbaGaaG4m aiaaigdaaeqaaaGcbaGaamyyamaaBaaaleaacaaIZaGaaGOmaaqaba aakeaacaWGHbWaaSbaaSqaaiaaiodacaaIZaaabeaaaaaakiaawIca caGLPaaacqGHRaWkdaqadaqaauaabeqadmaaaeaacaWGHbWaaSbaaS qaaiaaigdacaaIXaaabeaakiaacIcacaWGJbGaeyOeI0IaaGymaiaa cMcacqGHRaWkcaWGHbWaaSbaaSqaaiaaigdacaaIZaaabeaakiaado haaeaacaaIWaaabaGaamyyamaaBaaaleaacaaIXaGaaG4maaqabaGc caGGOaGaam4yaiabgkHiTiaaigdacaGGPaGaeyOeI0IaamyyamaaBa aaleaacaaIXaGaaGymaaqabaGccaWGZbaabaGaamyyamaaBaaaleaa caaIYaGaaGymaaqabaGccaGGOaGaam4yaiabgkHiTiaaigdacaGGPa Gaey4kaSIaamyyamaaBaaaleaacaaIYaGaaG4maaqabaGccaWGZbaa baGaaGimaaqaaiaadggadaWgaaWcbaGaaGOmaiaaiodaaeqaaOGaai ikaiaadogacqGHsislcaaIXaGaaiykaiabgkHiTiaadggadaWgaaWc baGaaGOmaiaaigdaaeqaaOGaam4CaaqaaiaadggadaWgaaWcbaGaaG 4maiaaigdaaeqaaOGaaiikaiaadogacqGHsislcaaIXaGaaiykaiab gUcaRiaadggadaWgaaWcbaGaaG4maiaaiodaaeqaaOGaam4Caaqaai aaicdaaeaacaWGHbWaaSbaaSqaaiaaiodacaaIZaaabeaakiaacIca caWGJbGaeyOeI0IaaGymaiaacMcacqGHsislcaWGHbWaaSbaaSqaai aaiodacaaIXaaabeaakiaadohaaaaacaGLOaGaayzkaaaaaaa@56B7@  

(1.2)

Note that only 2 columns are modified even for an nxn matrix.

If c and s are in the 1st and 3rd rows, then, for the 1st  column, we multiply the first column by (c-1) and multiply the third column by s and add these two colums,  For the third column we multiply the third column by (c-1) and the first column by MathType@MTEF@5@5@+= feaahiart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzagaeaa aaaaaaa8qacaWFtacaaa@37B3@ s and add these two columns.

Translating this to a larger matrix when c,s are in the i,j rows, for the ith column, we multiply the ith column by (c-1) and the jth column by s and add.  For the jth column, we multiply the jth column by (c-1) and the ith column by MathType@MTEF@5@5@+= feaahiart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzagaeaa aaaaaaa8qacaWFtacaaa@37B3@ s and then add these two columns. 

Then we add the resulting two columns to the ith and jth columns of A and that becomes the result for this matrix multiplication.

Just to convince the reader we do the left multiplication for rows 2 and 3 in a 4x4 matrix.

( 1 0 0 0 0 c s 0 0 s c 0 0 0 0 1 )( a 11 a 12 a 13 a 14 a 21 a 22 a 23 a 24 a 31 a 32 a 33 a 34 a 41 a 42 a 43 a 44 )=( a 11 a 12 a 13 a 14 c a 21 +s a 31 c a 22 +s a 32 c a 23 +s a 33 c a 24 +s a 34 c a 31 s a 21 c a 32 s a 22 c a 33 s a 23 c a 34 s a 24 a 41 a 42 a 43 a 44 ) MathType@MTEF@5@5@+= feaahiart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaqbae qabqabaaaaaeaacaaIXaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaa baGaaGimaaqaaiaadogaaeaacaWGZbaabaGaaGimaaqaaiaaicdaae aacqGHsislcaWGZbaabaGaam4yaaqaaiaaicdaaeaacaaIWaaabaGa aGimaaqaaiaaicdaaeaacaaIXaaaaaGaayjkaiaawMcaamaabmaaba qbaeqabqabaaaaaeaacaWGHbWaaSbaaSqaaiaaigdacaaIXaaabeaa aOqaaiaadggadaWgaaWcbaGaaGymaiaaikdaaeqaaaGcbaGaamyyam aaBaaaleaacaaIXaGaaG4maaqabaaakeaacaWGHbWaaSbaaSqaaiaa igdacaaI0aaabeaaaOqaaiaadggadaWgaaWcbaGaaGOmaiaaigdaae qaaaGcbaGaamyyamaaBaaaleaacaaIYaGaaGOmaaqabaaakeaacaWG HbWaaSbaaSqaaiaaikdacaaIZaaabeaaaOqaaiaadggadaWgaaWcba GaaGOmaiaaisdaaeqaaaGcbaGaamyyamaaBaaaleaacaaIZaGaaGym aaqabaaakeaacaWGHbWaaSbaaSqaaiaaiodacaaIYaaabeaaaOqaai aadggadaWgaaWcbaGaaG4maiaaiodaaeqaaaGcbaGaamyyamaaBaaa leaacaaIZaGaaGinaaqabaaakeaacaWGHbWaaSbaaSqaaiaaisdaca aIXaaabeaaaOqaaiaadggadaWgaaWcbaGaaGinaiaaikdaaeqaaaGc baGaamyyamaaBaaaleaacaaI0aGaaG4maaqabaaakeaacaWGHbWaaS baaSqaaiaaisdacaaI0aaabeaaaaaakiaawIcacaGLPaaacqGH9aqp daqadaqaauaabeqaeqaaaaaabaGaamyyamaaBaaaleaacaaIXaGaaG ymaaqabaaakeaacaWGHbWaaSbaaSqaaiaaigdacaaIYaaabeaaaOqa aiaadggadaWgaaWcbaGaaGymaiaaiodaaeqaaaGcbaGaamyyamaaBa aaleaacaaIXaGaaGinaaqabaaakeaacaWGJbGaamyyamaaBaaaleaa caaIYaGaaGymaaqabaGccqGHRaWkcaWGZbGaamyyamaaBaaaleaaca aIZaGaaGymaaqabaaakeaacaWGJbGaamyyamaaBaaaleaacaaIYaGa aGOmaaqabaGccqGHRaWkcaWGZbGaamyyamaaBaaaleaacaaIZaGaaG OmaaqabaaakeaacaWGJbGaamyyamaaBaaaleaacaaIYaGaaG4maaqa baGccqGHRaWkcaWGZbGaamyyamaaBaaaleaacaaIZaGaaG4maaqaba aakeaacaWGJbGaamyyamaaBaaaleaacaaIYaGaaGinaaqabaGccqGH RaWkcaWGZbGaamyyamaaBaaaleaacaaIZaGaaGinaaqabaaakeaaca WGJbGaamyyamaaBaaaleaacaaIZaGaaGymaaqabaGccqGHsislcaWG ZbGaamyyamaaBaaaleaacaaIYaGaaGymaaqabaaakeaacaWGJbGaam yyamaaBaaaleaacaaIZaGaaGOmaaqabaGccqGHsislcaWGZbGaamyy amaaBaaaleaacaaIYaGaaGOmaaqabaaakeaacaWGJbGaamyyamaaBa aaleaacaaIZaGaaG4maaqabaGccqGHsislcaWGZbGaamyyamaaBaaa leaacaaIYaGaaG4maaqabaaakeaacaWGJbGaamyyamaaBaaaleaaca aIZaGaaGinaaqabaGccqGHsislcaWGZbGaamyyamaaBaaaleaacaaI YaGaaGinaaqabaaakeaacaWGHbWaaSbaaSqaaiaaisdacaaIXaaabe aaaOqaaiaadggadaWgaaWcbaGaaGinaiaaikdaaeqaaaGcbaGaamyy amaaBaaaleaacaaI0aGaaG4maaqabaaakeaacaWGHbWaaSbaaSqaai aaisdacaaI0aaabeaaaaaakiaawIcacaGLPaaaaaa@C6D2@    

( 1 0 0 0 0 c s 0 0 s c 0 0 0 0 1 )( a 11 a 12 a 13 a 14 a 21 a 22 a 23 a 24 a 31 a 32 a 33 a 34 a 41 a 42 a 43 a 44 )= ( a 11 a 12 a 13 a 14 a 21 a 22 a 23 a 24 a 31 a 32 a 33 a 34 a 41 a 42 a 43 a 44 )+( a 11 a 12 a 13 a 14 (c1) a 21 +s a 31 (c1) a 22 +s a 32 (c1) a 23 +s a 33 (c1) a 24 +s a 34 (c1) a 31 s a 21 (c1) a 32 s a 22 (c1) a 33 s a 23 (c1) a 34 s a 24 a 41 a 42 a 43 a 44 ) MathType@MTEF@5@5@+= feaahiart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaWaaeWaae aafaqabeabeaaaaaqaaiaaigdaaeaacaaIWaaabaGaaGimaaqaaiaa icdaaeaacaaIWaaabaGaam4yaaqaaiaadohaaeaacaaIWaaabaGaaG imaaqaaiabgkHiTiaadohaaeaacaWGJbaabaGaaGimaaqaaiaaicda aeaacaaIWaaabaGaaGimaaqaaiaaigdaaaaacaGLOaGaayzkaaWaae WaaeaafaqabeabeaaaaaqaaiaadggadaWgaaWcbaGaaGymaiaaigda aeqaaaGcbaGaamyyamaaBaaaleaacaaIXaGaaGOmaaqabaaakeaaca WGHbWaaSbaaSqaaiaaigdacaaIZaaabeaaaOqaaiaadggadaWgaaWc baGaaGymaiaaisdaaeqaaaGcbaGaamyyamaaBaaaleaacaaIYaGaaG ymaaqabaaakeaacaWGHbWaaSbaaSqaaiaaikdacaaIYaaabeaaaOqa aiaadggadaWgaaWcbaGaaGOmaiaaiodaaeqaaaGcbaGaamyyamaaBa aaleaacaaIYaGaaGinaaqabaaakeaacaWGHbWaaSbaaSqaaiaaioda caaIXaaabeaaaOqaaiaadggadaWgaaWcbaGaaG4maiaaikdaaeqaaa GcbaGaamyyamaaBaaaleaacaaIZaGaaG4maaqabaaakeaacaWGHbWa aSbaaSqaaiaaiodacaaI0aaabeaaaOqaaiaadggadaWgaaWcbaGaaG inaiaaigdaaeqaaaGcbaGaamyyamaaBaaaleaacaaI0aGaaGOmaaqa baaakeaacaWGHbWaaSbaaSqaaiaaisdacaaIZaaabeaaaOqaaiaadg gadaWgaaWcbaGaaGinaiaaisdaaeqaaaaaaOGaayjkaiaawMcaaiab g2da9aqaamaabmaabaqbaeqabqabaaaaaeaacaWGHbWaaSbaaSqaai aaigdacaaIXaaabeaaaOqaaiaadggadaWgaaWcbaGaaGymaiaaikda aeqaaaGcbaGaamyyamaaBaaaleaacaaIXaGaaG4maaqabaaakeaaca WGHbWaaSbaaSqaaiaaigdacaaI0aaabeaaaOqaaiaadggadaWgaaWc baGaaGOmaiaaigdaaeqaaaGcbaGaamyyamaaBaaaleaacaaIYaGaaG OmaaqabaaakeaacaWGHbWaaSbaaSqaaiaaikdacaaIZaaabeaaaOqa aiaadggadaWgaaWcbaGaaGOmaiaaisdaaeqaaaGcbaGaamyyamaaBa aaleaacaaIZaGaaGymaaqabaaakeaacaWGHbWaaSbaaSqaaiaaioda caaIYaaabeaaaOqaaiaadggadaWgaaWcbaGaaG4maiaaiodaaeqaaa GcbaGaamyyamaaBaaaleaacaaIZaGaaGinaaqabaaakeaacaWGHbWa aSbaaSqaaiaaisdacaaIXaaabeaaaOqaaiaadggadaWgaaWcbaGaaG inaiaaikdaaeqaaaGcbaGaamyyamaaBaaaleaacaaI0aGaaG4maaqa baaakeaacaWGHbWaaSbaaSqaaiaaisdacaaI0aaabeaaaaaakiaawI cacaGLPaaacqGHRaWkdaqadaqaauaabeqaeqaaaaaabaGaamyyamaa BaaaleaacaaIXaGaaGymaaqabaaakeaacaWGHbWaaSbaaSqaaiaaig dacaaIYaaabeaaaOqaaiaadggadaWgaaWcbaGaaGymaiaaiodaaeqa aaGcbaGaamyyamaaBaaaleaacaaIXaGaaGinaaqabaaakeaacaGGOa Gaam4yaiabgkHiTiaaigdacaGGPaGaamyyamaaBaaaleaacaaIYaGa aGymaaqabaGccqGHRaWkcaWGZbGaamyyamaaBaaaleaacaaIZaGaaG ymaaqabaaakeaacaGGOaGaam4yaiabgkHiTiaaigdacaGGPaGaamyy amaaBaaaleaacaaIYaGaaGOmaaqabaGccqGHRaWkcaWGZbGaamyyam aaBaaaleaacaaIZaGaaGOmaaqabaaakeaacaGGOaGaam4yaiabgkHi TiaaigdacaGGPaGaamyyamaaBaaaleaacaaIYaGaaG4maaqabaGccq GHRaWkcaWGZbGaamyyamaaBaaaleaacaaIZaGaaG4maaqabaaakeaa caGGOaGaam4yaiabgkHiTiaaigdacaGGPaGaamyyamaaBaaaleaaca aIYaGaaGinaaqabaGccqGHRaWkcaWGZbGaamyyamaaBaaaleaacaaI ZaGaaGinaaqabaaakeaacaGGOaGaam4yaiabgkHiTiaaigdacaGGPa GaamyyamaaBaaaleaacaaIZaGaaGymaaqabaGccqGHsislcaWGZbGa amyyamaaBaaaleaacaaIYaGaaGymaaqabaaakeaacaGGOaGaam4yai abgkHiTiaaigdacaGGPaGaamyyamaaBaaaleaacaaIZaGaaGOmaaqa baGccqGHsislcaWGZbGaamyyamaaBaaaleaacaaIYaGaaGOmaaqaba aakeaacaGGOaGaam4yaiabgkHiTiaaigdacaGGPaGaamyyamaaBaaa leaacaaIZaGaaG4maaqabaGccqGHsislcaWGZbGaamyyamaaBaaale aacaaIYaGaaG4maaqabaaakeaacaGGOaGaam4yaiabgkHiTiaaigda caGGPaGaamyyamaaBaaaleaacaaIZaGaaGinaaqabaGccqGHsislca WGZbGaamyyamaaBaaaleaacaaIYaGaaGinaaqabaaakeaacaWGHbWa aSbaaSqaaiaaisdacaaIXaaabeaaaOqaaiaadggadaWgaaWcbaGaaG inaiaaikdaaeqaaaGcbaGaamyyamaaBaaaleaacaaI0aGaaG4maaqa baaakeaacaWGHbWaaSbaaSqaaiaaisdacaaI0aaabeaaaaaakiaawI cacaGLPaaaaaaa@0ABC@         (1.3)

Note that only rows 2 and 3 are changed.