Energy Equilibration between a Lattice and Electrons

Introduction

            We have already seen an animation of energy equilibration between two gases of different mass and different average initial energy. In the present animation we will see how energy is equilibrated between thermal energy of relatively free electrons and a lattice which is made up of massive nuclei (we'll call that particle an ion for brevity) that are harmonically bound to periodic lattice points and have zero initial energy.

Figures

Figure 1: Showing the electrons as blue randomly distributed and the ions as red situated at lattice points.  Also shows the histograms as well as the least squares fits of the electron and ion and sum distribution.

Calculations

Note: In the following, we will use lower case symbols for the free mass's parameters and upper case symbols for the bound mass's parameters.

1. One dimensional calculations:

As a warm-up, we will first compute the conservation of momentum and energy for a one dimensional free electron and anchored nucleus.  The equation for momentum are:

mv'+MV'=mv+MV p'+P'=p+P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyBai aadAhacaGGNaGaey4kaSIaamytaiaadAfacaGGNaGaeyypa0JaamyB aiaadAhacqGHRaWkcaWGnbGaamOvaaqaaiaadchacaGGNaGaey4kaS IaamiuaiaacEcacqGH9aqpcaWGWbGaey4kaSIaamiuaaaaaa@48FA@

Since the total momentum after the collision is the same as that before the collision, we can simplify the calculations by letting δp represent the change of momentum for each mass.             

p'=p+δp P'=Pδp MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamiCai aacEcacqGH9aqpcaWGWbGaey4kaSIaeqiTdqMaamiCaaqaaiaadcfa caGGNaGaeyypa0JaamiuaiabgkHiTiabes7aKjaadchaaaaa@43EB@       

and those for energy are

1 2 ( mv ' 2 +MV ' 2 )= 1 2 ( m v 2 +M V 2 ) 1 2 ( p ' 2 m + P ' 2 M )= 1 2 ( p 2 m + P 2 M ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaWaaSaaae aacaaIXaaabaGaaGOmaaaadaqadaqaaiaad2gacaWG2bGaai4jamaa CaaaleqabaGaaGOmaaaakiabgUcaRiaad2eacaWGwbGaai4jamaaCa aaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaiabg2da9maalaaabaGa aGymaaqaaiaaikdaaaWaaeWaaeaacaWGTbGaamODamaaCaaaleqaba GaaGOmaaaakiabgUcaRiaad2eacaWGwbWaaWbaaSqabeaacaaIYaaa aaGccaGLOaGaayzkaaaabaWaaSaaaeaacaaIXaaabaGaaGOmaaaada qadaqaamaalaaabaGaamiCaiaacEcadaahaaWcbeqaaiaaikdaaaaa keaacaWGTbaaaiabgUcaRmaalaaabaGaamiuaiaacEcadaahaaWcbe qaaiaaikdaaaaakeaacaWGnbaaaaGaayjkaiaawMcaaiabg2da9maa laaabaGaaGymaaqaaiaaikdaaaWaaeWaaeaadaWcaaqaaiaadchada ahaaWcbeqaaiaaikdaaaaakeaacaWGTbaaaiabgUcaRmaalaaabaGa amiuamaaCaaaleqabaGaaGOmaaaaaOqaaiaad2eaaaaacaGLOaGaay zkaaaaaaa@609A@

1 2 ( (p+δp) 2 m + (Pδp) 2 M )= 1 2 ( p 2 m + P 2 M ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaaqaaiaaikdaaaWaaeWaaeaadaWcaaqaaiaacIcacaWGWbGaey4k aSIaeqiTdqMaamiCaiaacMcadaahaaWcbeqaaiaaikdaaaaakeaaca WGTbaaaiabgUcaRmaalaaabaGaaiikaiaadcfacqGHsislcqaH0oaz caWGWbGaaiykamaaCaaaleqabaGaaGOmaaaaaOqaaiaad2eaaaaaca GLOaGaayzkaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaadaqa daqaamaalaaabaGaamiCamaaCaaaleqabaGaaGOmaaaaaOqaaiaad2 gaaaGaey4kaSYaaSaaaeaacaWGqbWaaWbaaSqabeaacaaIYaaaaaGc baGaamytaaaaaiaawIcacaGLPaaaaaa@53B2@

1 2 ( ( p 2 +2pδp+δ p 2 ) m + ( P 2 2Pδp+δ p 2 ) M )= 1 2 ( p 2 m + P 2 M ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaaqaaiaaikdaaaWaaeWaaeaadaWcaaqaaiaacIcacaWGWbWaaWba aSqabeaacaaIYaaaaOGaey4kaSIaaGOmaiaadchacqaH0oazcaWGWb Gaey4kaSIaeqiTdqMaamiCamaaCaaaleqabaGaaGOmaaaakiaacMca aeaacaWGTbaaaiabgUcaRmaalaaabaGaaiikaiaadcfadaahaaWcbe qaaiaaikdaaaGccqGHsislcaaIYaGaamiuaiabes7aKjaadchacqGH RaWkcqaH0oazcaWGWbWaaWbaaSqabeaacaaIYaaaaOGaaiykaaqaai aad2eaaaaacaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacaaIXaaabaGa aGOmaaaadaqadaqaamaalaaabaGaamiCamaaCaaaleqabaGaaGOmaa aaaOqaaiaad2gaaaGaey4kaSYaaSaaaeaacaWGqbWaaWbaaSqabeaa caaIYaaaaaGcbaGaamytaaaaaiaawIcacaGLPaaaaaa@5FD2@

2pδp m 2Pδp M =δ p 2 ( 1 m + 1 M ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG OmaiaadchacqaH0oazcaWGWbaabaGaamyBaaaacqGHsisldaWcaaqa aiaaikdacaWGqbGaeqiTdqMaamiCaaqaaiaad2eaaaGaeyypa0Jaey OeI0IaeqiTdqMaamiCamaaCaaaleqabaGaaGOmaaaakmaabmaabaWa aSaaaeaacaaIXaaabaGaamyBaaaacqGHRaWkdaWcaaqaaiaaigdaae aacaWGnbaaaaGaayjkaiaawMcaaaaa@4C77@

δp=( 2P M 2p m ) mM m+M =2 mM m+M (Vv) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaadc hacqGH9aqpdaqadaqaamaalaaabaGaaGOmaiaadcfaaeaacaWGnbaa aiabgkHiTmaalaaabaGaaGOmaiaadchaaeaacaWGTbaaaaGaayjkai aawMcaamaalaaabaGaamyBaiaad2eaaeaacaWGTbGaey4kaSIaamyt aaaacqGH9aqpcaaIYaWaaSaaaeaacaWGTbGaamytaaqaaiaad2gacq GHRaWkcaWGnbaaaiaacIcacaWGwbGaeyOeI0IaamODaiaacMcaaaa@4FF9@

The displacement of M with respect to its rigid anchor point is expressed by

X(t)=Acos(ωt+ θ 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacaGGOa GaamiDaiaacMcacqGH9aqpcaWGbbGaci4yaiaac+gacaGGZbGaaiik aiabeM8a3jaadshacqGHRaWkcqaH4oqCdaWgaaWcbaGaaGimaaqaba GccaGGPaaaaa@4560@                                                  

where A is the amplitude just prior to collision.

The momentum of M is also expressed as a function of time in the following manner:

P(t)=MωAsin(ωt+ θ 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfacaGGOa GaamiDaiaacMcacqGH9aqpcqGHsislcaWGnbGaeqyYdCNaamyqaiGa cohacaGGPbGaaiOBaiaacIcacqaHjpWDcaWG0bGaey4kaSIaeqiUde 3aaSbaaSqaaiaaicdaaeqaaOGaaiykaaaa@48E9@

Immediately following the collision, the displacement of M has not changed but the momentum and energy have changed.  We can write:

P'(t)=MωA'sin(ωt+ θ 0 +δθ)=MV'=Pδp MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfacaGGNa GaaiikaiaadshacaGGPaGaeyypa0JaeyOeI0IaamytaiabeM8a3jaa dgeacaGGNaGaci4CaiaacMgacaGGUbGaaiikaiabeM8a3jaadshacq GHRaWkcqaH4oqCdaWgaaWcbaGaaGimaaqabaGccqGHRaWkcqaH0oaz cqaH4oqCcaGGPaGaeyypa0JaamytaiaadAfacaGGNaGaeyypa0Jaam iuaiabgkHiTiabes7aKjaadchaaaa@573C@                                 (0)

where A and δθ are presently unknown.  The new amplitude A' can be found from the energy conservation equation:

1 2 kA ' 2 = 1 2 k A 2 + 1 2M (P ' 2 P 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaaqaaiaaikdaaaGaam4AaiaadgeacaGGNaWaaWbaaSqabeaacaaI YaaaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaacaWGRbGaam yqamaaCaaaleqabaGaaGOmaaaakiabgUcaRmaalaaabaGaaGymaaqa aiaaikdacaWGnbaaaiaacIcacaWGqbGaai4jamaaCaaaleqabaGaaG OmaaaakiabgkHiTiaadcfadaahaaWcbeqaaiaaikdaaaGccaGGPaaa aa@49B8@

where k is the constant of the linear restoring force, F(x):

F(x)=kX MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeacaGGOa GaamiEaiaacMcacqGH9aqpcqGHsislcaWGRbGaamiwaaaa@3CCC@

To obtain δθ, we use the fact that, immediately after the collision the displacement must be the same as just before the collision:

X'( t c+ )=A'cos(ω t c+ + θ 0 +δθ)=Acos(ω t c + θ 0 )=X( t c ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacaGGNa GaaiikaiaadshadaWgaaWcbaGaam4yaiabgUcaRaqabaGccaGGPaGa eyypa0JaamyqaiaacEcaciGGJbGaai4BaiaacohacaGGOaGaeqyYdC NaamiDamaaBaaaleaacaWGJbGaey4kaScabeaakiabgUcaRiabeI7a XnaaBaaaleaacaaIWaaabeaakiabgUcaRiabes7aKjabeI7aXjaacM cacqGH9aqpcaWGbbGaci4yaiaac+gacaGGZbGaaiikaiabeM8a3jaa dshadaWgaaWcbaGaam4yaiabgkHiTaqabaGccqGHRaWkcqaH4oqCda WgaaWcbaGaaGimaaqabaGccaGGPaGaeyypa0JaamiwaiaacIcacaWG 0bWaaSbaaSqaaiaadogacqGHsislaeqaaOGaaiykaaaa@6384@                            (1)

Getting both the sin and cosine terms in ωt+θ0+δθ we can have a fail-safe equation for δθ:

MωA'sin(ω t c + θ 0 +δθ)=Pδp MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiaad2 eacqaHjpWDcaWGbbGaai4jaiGacohacaGGPbGaaiOBaiaacIcacqaH jpWDcaWG0bWaaSbaaSqaaiaadogaaeqaaOGaey4kaSIaeqiUde3aaS baaSqaaiaaicdaaeqaaOGaey4kaSIaeqiTdqMaeqiUdeNaaiykaiab g2da9iaadcfacqGHsislcqaH0oazcaWGWbaaaa@5024@

A'cos(ω t c+ + θ 0 +δθ)=Acos(ω t c + θ 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgeacaGGNa Gaci4yaiaac+gacaGGZbGaaiikaiabeM8a3jaadshadaWgaaWcbaGa am4yaiabgUcaRaqabaGccqGHRaWkcqaH4oqCdaWgaaWcbaGaaGimaa qabaGccqGHRaWkcqaH0oazcqaH4oqCcaGGPaGaeyypa0JaamyqaiGa cogacaGGVbGaai4CaiaacIcacqaHjpWDcaWG0bWaaSbaaSqaaiaado gacqGHsislaeqaaOGaey4kaSIaeqiUde3aaSbaaSqaaiaaicdaaeqa aOGaaiykaaaa@5664@

ω t c+ + θ 0 +δθ=atan2( Pδp MωA' , A A' cos(ωt+ θ 0 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3jaads hadaWgaaWcbaGaam4yaiabgUcaRaqabaGccqGHRaWkcqaH4oqCdaWg aaWcbaGaaGimaaqabaGccqGHRaWkcqaH0oazcqaH4oqCcqGH9aqpca aMc8UaaeyyaiaabshacaqGHbGaaeOBaiaabkdadaqadaqaaiabgkHi TmaalaaabaGaamiuaiabgkHiTiabes7aKjaadchaaeaacaWGnbGaeq yYdCNaamyqaiaacEcaaaGaaiilamaalaaabaGaamyqaaqaaiaadgea caGGNaaaaiGacogacaGGVbGaai4CaiaacIcacqaHjpWDcaWG0bGaey 4kaSIaeqiUde3aaSbaaSqaaiaaicdaaeqaaOGaaiykaaGaayjkaiaa wMcaaaaa@61CF@

 

Using equation 1 to express A' in terms of A we have:

A'cos(ω t c+ + θ 0 +δθ)=Acos(ω t c + θ 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgeacaGGNa Gaci4yaiaac+gacaGGZbGaaiikaiabeM8a3jaadshadaWgaaWcbaGa am4yaiabgUcaRaqabaGccqGHRaWkcqaH4oqCdaWgaaWcbaGaaGimaa qabaGccqGHRaWkcqaH0oazcqaH4oqCcaGGPaGaeyypa0JaamyqaiGa cogacaGGVbGaai4CaiaacIcacqaHjpWDcaWG0bWaaSbaaSqaaiaado gacqGHsislaeqaaOGaey4kaSIaeqiUde3aaSbaaSqaaiaaicdaaeqa aOGaaiykaaaa@5664@

A ' 2 [1 cos 2 (ω t c+ + θ 0 +δθ)]=A ' 2 A 2 cos 2 (ω t c + θ 0 )=A ' 2 sin 2 (ω t c+ + θ 0 +δθ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgeacaGGNa WaaWbaaSqabeaacaaIYaaaaOGaai4waiaaigdacqGHsislciGGJbGa ai4BaiaacohadaahaaWcbeqaaiaaikdaaaGccaGGOaGaeqyYdCNaam iDamaaBaaaleaacaWGJbGaey4kaScabeaakiabgUcaRiabeI7aXnaa BaaaleaacaaIWaaabeaakiabgUcaRiabes7aKjabeI7aXjaacMcaca GGDbGaeyypa0JaamyqaiaacEcadaahaaWcbeqaaiaaikdaaaGccqGH sislcaWGbbWaaWbaaSqabeaacaaIYaaaaOGaci4yaiaac+gacaGGZb WaaWbaaSqabeaacaaIYaaaaOGaaiikaiabeM8a3jaadshadaWgaaWc baGaam4yaiabgkHiTaqabaGccqGHRaWkcqaH4oqCdaWgaaWcbaGaaG imaaqabaGccaGGPaGaeyypa0JaamyqaiaacEcadaahaaWcbeqaaiaa ikdaaaGcciGGZbGaaiyAaiaac6gadaahaaWcbeqaaiaaikdaaaGcca GGOaGaeqyYdCNaamiDamaaBaaaleaacaWGJbGaey4kaScabeaakiab gUcaRiabeI7aXnaaBaaaleaacaaIWaaabeaakiabgUcaRiabes7aKj abeI7aXjaacMcaaaa@7602@

Let's look at the difference P'2-P2 at the time of the collision:

P' (t) 2 P (t) 2 = M 2 ω 2 [A ' 2 sin 2 (ω t c + θ 0 +δθ) A 2 sin 2 (ω t c + θ 0 )] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfacaGGNa GaaiikaiaadshacaGGPaWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0Ia amiuaiaacIcacaWG0bGaaiykamaaCaaaleqabaGaaGOmaaaakiabg2 da9iaad2eadaahaaWcbeqaaiaaikdaaaGccqaHjpWDdaahaaWcbeqa aiaaikdaaaGccaGGBbGaamyqaiaacEcadaahaaWcbeqaaiaaikdaaa GcciGGZbGaaiyAaiaac6gadaahaaWcbeqaaiaaikdaaaGccaGGOaGa eqyYdCNaamiDamaaBaaaleaacaWGJbaabeaakiabgUcaRiabeI7aXn aaBaaaleaacaaIWaaabeaakiabgUcaRiabes7aKjabeI7aXjaacMca cqGHsislcaWGbbWaaWbaaSqabeaacaaIYaaaaOGaci4CaiaacMgaca GGUbWaaWbaaSqabeaacaaIYaaaaOGaaiikaiabeM8a3jaadshadaWg aaWcbaGaam4yaaqabaGccqGHRaWkcqaH4oqCdaWgaaWcbaGaaGimaa qabaGccaGGPaGaaiyxaaaa@6969@

P' (t) 2 P (t) 2 = M 2 ω 2 [A ' 2 A 2 cos 2 (ω t c + θ 0 ) A 2 (1 cos 2 (ω t c + θ 0 ))] = M 2 ω 2 (A ' 2 A 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamiuai aacEcacaGGOaGaamiDaiaacMcadaahaaWcbeqaaiaaikdaaaGccqGH sislcaWGqbGaaiikaiaadshacaGGPaWaaWbaaSqabeaacaaIYaaaaO Gaeyypa0JaamytamaaCaaaleqabaGaaGOmaaaakiabeM8a3naaCaaa leqabaGaaGOmaaaakiaacUfacaWGbbGaai4jamaaCaaaleqabaGaaG OmaaaakiabgkHiTiaadgeadaahaaWcbeqaaiaaikdaaaGcciGGJbGa ai4BaiaacohadaahaaWcbeqaaiaaikdaaaGccaGGOaGaeqyYdCNaam iDamaaBaaaleaacaWGJbaabeaakiabgUcaRiabeI7aXnaaBaaaleaa caaIWaaabeaakiaacMcacqGHsislcaWGbbWaaWbaaSqabeaacaaIYa aaaOGaaiikaiaaigdacqGHsislciGGJbGaai4BaiaacohadaahaaWc beqaaiaaikdaaaGccaGGOaGaeqyYdCNaamiDamaaBaaaleaacaWGJb aabeaakiabgUcaRiabeI7aXnaaBaaaleaacaaIWaaabeaakiaacMca caGGPaGaaiyxaaqaaiabg2da9iaad2eadaahaaWcbeqaaiaaikdaaa GccqaHjpWDdaahaaWcbeqaaiaaikdaaaGccaGGOaGaamyqaiaacEca daahaaWcbeqaaiaaikdaaaGccqGHsislcaWGbbWaaWbaaSqabeaaca aIYaaaaOGaaiykaaaaaa@76BE@

which should have been expected.

This is another expression of the energy change due to collision.  Notice that the difference is independent of the time of the collision.  Let's set this equal to the kinematic energy difference:

M 2 ω 2 (A ' 2 A 2 )=[ (Pδp) 2 P 2 ]=[δ p 2 2Pδp] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eadaahaa WcbeqaaiaaikdaaaGccqaHjpWDdaahaaWcbeqaaiaaikdaaaGccaGG OaGaamyqaiaacEcadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWGbb WaaWbaaSqabeaacaaIYaaaaOGaaiykaiabg2da9iaacUfacaGGOaGa amiuaiabgkHiTiabes7aKjaadchacaGGPaWaaWbaaSqabeaacaaIYa aaaOGaeyOeI0IaamiuamaaCaaaleqabaGaaGOmaaaakiaac2facqGH 9aqpcaGGBbGaeqiTdqMaamiCamaaCaaaleqabaGaaGOmaaaakiabgk HiTiaaikdacaWGqbGaeqiTdqMaamiCaiaac2faaaa@5861@

which gives us another expression for A'.  This completes the analysis for 1 dimension.

 

 

2. Three dimensional calculations:

            Here we will consider spherical particles which have the different masses, m and M, and diameters, D1 and D2.  The centers of the free/anchored spheres will be labeled (x,y,z) and (X,Y,Z).  Upon collision, the momentum transferred between the spheres will always be along the unit vector between their centers:

u= [ (xX) x ^ +(yY) y ^ +(zZ) z ^ ] r 12 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahwhacqGH9a qpdaWcaaqaamaadmaabaGaaiikaiaadIhacqGHsislcaWGybGaaiyk aiqahIhagaqcaiabgUcaRiaacIcacaWG5bGaeyOeI0IaamywaiaacM caceWH5bGbaKaacqGHRaWkcaGGOaGaamOEaiabgkHiTiaadQfacaGG PaGabCOEayaajaaacaGLBbGaayzxaaaabaGaamOCamaaBaaaleaaca aIXaGaaGOmaaqabaaaaaaa@4DEB@                                                    (2)

where

r 12 = (xX) 2 + (yY) 2 + (zZ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhadaWgaa WcbaGaaGymaiaaikdaaeqaaOGaeyypa0ZaaOaaaeaacaGGOaGaamiE aiabgkHiTiaadIfacaGGPaWaaWbaaSqabeaacaaIYaaaaOGaey4kaS IaaiikaiaadMhacqGHsislcaWGzbGaaiykamaaCaaaleqabaGaaGOm aaaakiabgUcaRiaacIcacaWG6bGaeyOeI0IaamOwaiaacMcadaahaa Wcbeqaaiaaikdaaaaabeaaaaa@4A9E@

is the distance between centers.  Since the animation is illustrated in only 2 dimensions, the collision analysis will assume a containing box that is large in the x and y dimensions but very thin in the z dimension. The following vector mathematics is correct for either 2 or three dimensions.

The expression for the final momenta in terms of the initial momenta is:

mv'+MV'=mv+MV MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gacaWH2b Gaai4jaiabgUcaRiaad2eacaWGwbGaai4jaiabg2da9iaad2gacaWH 2bGaey4kaSIaamytaiaadAfaaaa@4147@                                                                           (3)

where the apostrophe on the left side of the equations indicates the final velocities.  We know that the energies are conserved so

m v '2 +M V '2 2 = m v 2 +M V 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam yBaiaadAhadaqhaaWcbaaabaGaai4jaiaaikdaaaGccqGHRaWkcaWG nbGaamOvamaaDaaaleaaaeaacaGGNaGaaGOmaaaaaOqaaiaaikdaaa Gaeyypa0ZaaSaaaeaacaWGTbGaamODamaaDaaaleaaaeaacaaIYaaa aOGaey4kaSIaamytaiaadAfadaqhaaWcbaaabaGaaGOmaaaaaOqaai aaikdaaaaaaa@46A3@                                                                             (4)

The directions of the change in momenta are along the vector of centers, u, and the values of the changes of momenta must be equal and opposite.

m 1 Δ v 1 μδvu= m 2 Δ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaWgaa WcbaGaaGymaaqabaGccaWHuoGaaCODamaaBaaaleaacaaIXaaabeaa kiabggMi6kabeY7aTjabes7aKjaadAhacaWH1bGaeyypa0JaeyOeI0 IaamyBamaaBaaaleaacaaIYaaabeaakiaahs5acaWH2bWaaSbaaSqa aiaaikdaaeqaaaaa@48D9@                                                                      (5)

where μ has units of mass and is still to be determined.  Using equation 5 in equation 3:

mv'=mv+μδvu MV'=MVμδvu MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyBai aahAhacaGGNaGaeyypa0JaamyBaiaahAhacqGHRaWkcqaH8oqBcqaH 0oazcaWG2bGaaCyDaaqaaiaad2eacaWHwbGaai4jaiabg2da9iaad2 eacaWHwbGaeyOeI0IaeqiVd0MaeqiTdqMaamODaiaahwhaaaaa@4D0F@                                                                                (6)

Now we can use equation 6 in equation 4 to solve for the value of Mδv.

  (mv+μδvu)(mv+μδvu) 2m + (MVμδvu)(MVμδvu) 2M = m v 2 +M V 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaai ikaiaad2gacaWH2bGaey4kaSIaeqiVd0MaeqiTdqMaamODaiaahwha caGGPaGaeyOiGCRaaiikaiaad2gacaWH2bGaey4kaSIaeqiVd0Maeq iTdqMaamODaiaahwhacaGGPaaabaGaaGOmaiaad2gaaaGaey4kaSYa aSaaaeaacaGGOaGaamytaiaahAfacqGHsislcqaH8oqBcqaH0oazca WG2bGaaCyDaiaacMcacqGHIaYTcaGGOaGaamytaiaahAfacqGHsisl cqaH8oqBcqaH0oazcaWG2bGaaCyDaiaacMcaaeaacaaIYaGaamytaa aacqGH9aqpdaWcaaqaaiaad2gacaWG2bWaa0baaSqaaaqaaiaaikda aaGccqGHRaWkcaWGnbGaamOvamaaCaaaleqabaGaaGOmaaaaaOqaai aaikdaaaaaaa@6AFD@  (7)

where the large dot stands for the dot product and equation 7 simplifies to:

(2mμδvuv+ μ 2 δ v 2 ) 2m + (2MμδvuV+ μ 2 δ v 2 ) 2M =0 μ 2 δ v 2 ( 1 m + 1 M )+2δvμ(uvuV)=0 μδv= 2mMu(Vv) m+M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaWaaSaaae aacaGGOaGaaGOmaiaad2gacqaH8oqBcqaH0oazcaWG2bGaaCyDaiab gkci3kaahAhacqGHRaWkcqaH8oqBdaahaaWcbeqaaiaaikdaaaGccq aH0oazcaWG2bWaaWbaaSqabeaacaaIYaaaaOGaaiykaaqaaiaaikda caWGTbaaaiabgUcaRmaalaaabaGaaiikaiabgkHiTiaaikdacaWGnb GaeqiVd0MaeqiTdqMaamODaiaahwhacqGHIaYTcaWHwbGaey4kaSIa eqiVd02aaWbaaSqabeaacaaIYaaaaOGaeqiTdqMaamODamaaCaaale qabaGaaGOmaaaakiaacMcaaeaacaaIYaGaamytaaaacqGH9aqpcaaI WaaabaGaeqiVd02aaWbaaSqabeaacaaIYaaaaOGaeqiTdqMaamODam aaCaaaleqabaGaaGOmaaaakmaabmaabaWaaSaaaeaacaaIXaaabaGa amyBaaaacqGHRaWkdaWcaaqaaiaaigdaaeaacaWGnbaaaaGaayjkai aawMcaaiabgUcaRiaaikdacqaH0oazcaWG2bGaeqiVd0Maaiikaiaa hwhacqGHIaYTcaWH2bGaeyOeI0IaaCyDaiabgkci3kaahAfacaGGPa Gaeyypa0JaaGimaaqaaiabeY7aTjabes7aKjaadAhacqGH9aqpdaWc aaqaaiaaikdacaWGTbGaamytaiaahwhacqGHIaYTcaGGOaGaaCOvai abgkHiTiaahAhacaGGPaaabaGaamyBaiabgUcaRiaad2eaaaaaaaa@8EB0@                                     (8)

We can now make the identification:

μ= 2 m 1 m 2 m 1 + m 2 =2 μ r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTjabg2 da9maalaaabaGaaGOmaiaad2gadaWgaaWcbaGaaGymaaqabaGccaWG TbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaamyBamaaBaaaleaacaaIXa aabeaakiabgUcaRiaad2gadaWgaaWcbaGaaGOmaaqabaaaaOGaeyyp a0JaaGOmaiabeY7aTnaaBaaaleaacaWGYbaabeaaaaa@467E@                                                                                (9)

where μr=μ/2 is known as the "reduced mass".

Equations 6 and 8 are a complete solution for the final momenta. The final velocities are computed by dividing both sides of equations 6 by their respective masses:

  v'=v+ 2M m+M u(Vv)u V'=V 2m m+M u(Vv)u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaaCODai aacEcacqGH9aqpcaWH2bGaey4kaSYaaSaaaeaacaaIYaGaamytaaqa aiaad2gacqGHRaWkcaWGnbaaaiaahwhacqGHIaYTcaGGOaGaaCOvai abgkHiTiaahAhacaGGPaGaaCyDaaqaaiaahAfacaGGNaGaeyypa0Ja aCOvaiabgkHiTmaalaaabaGaaGOmaiaad2gaaeaacaWGTbGaey4kaS IaamytaaaacaWH1bGaeyOiGCRaaiikaiaahAfacqGHsislcaWH2bGa aiykaiaahwhaaaaa@56D1@                                       (10)

Viewed as a harmonic oscillator, we have the following equations for displacement of M at the time of the collision:

X= A x cos(ωt+ θ 0x )=A ' x cos(ωt+ θ 0x +δ θ x ) Y= A y cos(ωt+ θ 0y )=A ' y cos(ωt+ θ 0y +δ θ y ) Z= A z cos(ωt+ θ 0z )=A ' z cos(ωt+ θ 0z +δ θ z ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamiwai abg2da9iaadgeadaWgaaWcbaGaamiEaaqabaGcciGGJbGaai4Baiaa cohacaGGOaGaeqyYdCNaamiDaiabgUcaRiabeI7aXnaaBaaaleaaca aIWaGaamiEaaqabaGccaGGPaGaeyypa0JaamyqaiaacEcadaWgaaWc baGaamiEaaqabaGcciGGJbGaai4BaiaacohacaGGOaGaeqyYdCNaam iDaiabgUcaRiabeI7aXnaaBaaaleaacaaIWaGaamiEaaqabaGccqGH RaWkcqaH0oazcqaH4oqCdaWgaaWcbaGaamiEaaqabaGccaGGPaaaba Gaamywaiabg2da9iaadgeadaWgaaWcbaGaamyEaaqabaGcciGGJbGa ai4BaiaacohacaGGOaGaeqyYdCNaamiDaiabgUcaRiabeI7aXnaaBa aaleaacaaIWaGaamyEaaqabaGccaGGPaGaeyypa0JaamyqaiaacEca daWgaaWcbaGaamyEaaqabaGcciGGJbGaai4BaiaacohacaGGOaGaeq yYdCNaamiDaiabgUcaRiabeI7aXnaaBaaaleaacaaIWaGaamyEaaqa baGccqGHRaWkcqaH0oazcqaH4oqCdaWgaaWcbaGaamyEaaqabaGcca GGPaaabaGaamOwaiabg2da9iaadgeadaWgaaWcbaGaamOEaaqabaGc ciGGJbGaai4BaiaacohacaGGOaGaeqyYdCNaamiDaiabgUcaRiabeI 7aXnaaBaaaleaacaaIWaGaamOEaaqabaGccaGGPaGaeyypa0Jaamyq aiaacEcadaWgaaWcbaGaamOEaaqabaGcciGGJbGaai4Baiaacohaca GGOaGaeqyYdCNaamiDaiabgUcaRiabeI7aXnaaBaaaleaacaaIWaGa amOEaaqabaGccqGHRaWkcqaH0oazcqaH4oqCdaWgaaWcbaGaamOEaa qabaGccaGGPaaaaaa@A1B1@            (11)

where the result on the right is for just after the collision.  For convenience I will assume that the restoring force is the same in all three directions so there is only one ω.  Since Ax and θ0 are known, Equations 11 can be solved for either A' or δθ.

 

The velocity components in all three directions can be written from equation 11:

V x =ω A x sin(ωt+ θ 0x )V ' x =ωA ' x sin(ωt+ θ 0x +δ θ x ) V y =ω A y sin(ωt+ θ 0y )V ' y =ωA ' y sin(ωt+ θ 0y +δ θ y ) V z =ω A z sin(ωt+ θ 0z )V ' z =ωA ' z sin(ωt+ θ 0z +δ θ z ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamOvam aaBaaaleaacaWG4baabeaakiabg2da9iabgkHiTiabeM8a3jaadgea daWgaaWcbaGaamiEaaqabaGcciGGZbGaaiyAaiaac6gacaGGOaGaeq yYdCNaamiDaiabgUcaRiabeI7aXnaaBaaaleaacaaIWaGaamiEaaqa baGccaGGPaGaaGPaVlaaykW7caaMc8UaaGPaVlaadAfacaGGNaWaaS baaSqaaiaadIhaaeqaaOGaeyypa0JaeyOeI0IaeqyYdCNaamyqaiaa cEcadaWgaaWcbaGaamiEaaqabaGcciGGZbGaaiyAaiaac6gacaGGOa GaeqyYdCNaamiDaiabgUcaRiabeI7aXnaaBaaaleaacaaIWaGaamiE aaqabaGccqGHRaWkcqaH0oazcqaH4oqCdaWgaaWcbaGaamiEaaqaba GccaGGPaaabaGaamOvamaaBaaaleaacaWG5baabeaakiabg2da9iab gkHiTiabeM8a3jaadgeadaWgaaWcbaGaamyEaaqabaGcciGGZbGaai yAaiaac6gacaGGOaGaeqyYdCNaamiDaiabgUcaRiabeI7aXnaaBaaa leaacaaIWaGaamyEaaqabaGccaGGPaGaaGPaVlaaykW7caWGwbGaai 4jamaaBaaaleaacaWG5baabeaakiabg2da9iabgkHiTiabeM8a3jaa dgeacaGGNaWaaSbaaSqaaiaadMhaaeqaaOGaci4CaiaacMgacaGGUb GaaiikaiabeM8a3jaadshacqGHRaWkcqaH4oqCdaWgaaWcbaGaaGim aiaadMhaaeqaaOGaey4kaSIaeqiTdqMaeqiUde3aaSbaaSqaaiaadM haaeqaaOGaaiykaaqaaiaadAfadaWgaaWcbaGaamOEaaqabaGccqGH 9aqpcqGHsislcqaHjpWDcaWGbbWaaSbaaSqaaiaadQhaaeqaaOGaci 4CaiaacMgacaGGUbGaaiikaiabeM8a3jaadshacqGHRaWkcqaH4oqC daWgaaWcbaGaaGimaiaadQhaaeqaaOGaaiykaiaaykW7caaMc8UaaG PaVlaadAfacaGGNaWaaSbaaSqaaiaadQhaaeqaaOGaeyypa0JaeyOe I0IaeqyYdCNaamyqaiaacEcadaWgaaWcbaGaamOEaaqabaGcciGGZb GaaiyAaiaac6gacaGGOaGaeqyYdCNaamiDaiabgUcaRiabeI7aXnaa BaaaleaacaaIWaGaamOEaaqabaGccqGHRaWkcqaH0oazcqaH4oqCda WgaaWcbaGaamOEaaqabaGccaGGPaaaaaa@CBCF@

Just as for the one dimensional case, we will equate the energy changes in the harmonic oscillator case with the energy changes in the hard sphere collision case as given below:

MV'=MVμδvu MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eacaWHwb Gaai4jaiabg2da9iaad2eacaWHwbGaeyOeI0IaeqiVd0MaeqiTdqMa amODaiaahwhaaaa@413F@

M 2 V ' 2 M 2 V 2 2M = 1 2M ( (μδv) 2 2μMδv(Vu) )= 1 2 ( k x (A ' x 2 A x 2 )+ k y (A ' y 2 A y 2 )+ k z (A ' z 2 A z 2 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam ytamaaCaaaleqabaGaaGOmaaaakiaahAfacaGGNaWaaWbaaSqabeaa caaIYaaaaOGaeyOeI0IaamytamaaCaaaleqabaGaaGOmaaaakiaadA fadaahaaWcbeqaaiaaikdaaaaakeaacaaIYaGaamytaaaacqGH9aqp daWcaaqaaiaaigdaaeaacaaIYaGaamytaaaadaqadaqaaiaacIcacq aH8oqBcqaH0oazcaWG2bGaaiykamaaCaaaleqabaGaaGOmaaaakiab gkHiTiaaikdacqaH8oqBcaWGnbGaeqiTdqMaamODaiaacIcacaWHwb GaeyOiGCRaaCyDaiaacMcaaiaawIcacaGLPaaacqGH9aqpdaWcaaqa aiaaigdaaeaacaaIYaaaamaabmaabaGaam4AamaaBaaaleaacaWG4b aabeaakiaacIcacaWGbbGaai4jamaaDaaaleaacaWG4baabaGaaGOm aaaakiabgkHiTiaadgeadaqhaaWcbaGaamiEaaqaaiaaikdaaaGcca GGPaGaey4kaSIaam4AamaaBaaaleaacaWG5baabeaakiaacIcacaWG bbGaai4jamaaDaaaleaacaWG5baabaGaaGOmaaaakiabgkHiTiaadg eadaqhaaWcbaGaamyEaaqaaiaaikdaaaGccaGGPaGaey4kaSIaam4A amaaBaaaleaacaWG6baabeaakiaacIcacaWGbbGaai4jamaaDaaale aacaWG6baabaGaaGOmaaaakiabgkHiTiaadgeadaqhaaWcbaGaamOE aaqaaiaaikdaaaGccaGGPaaacaGLOaGaayzkaaaaaa@7CC4@  Similarly we can write the components of V'-V in terms of the harmonic oscillator velocity components:

V x ' V x = 2m m+M u(Vv) u x =ω[ A x 'sin(ωt+ θ 0x +δ θ x ) A x sin(ωt+ θ 0x ) ] V y ' V y = 2m m+M u(Vv) u y =ω[ A y 'sin(ωt+ θ 0y +δ θ y ) A y sin(ωt+ θ 0y ) ] V z ' V z = 2m m+M u(Vv) u z =ω[ A z 'sin(ωt+ θ 0z +δ θ z ) A z sin(ωt+ θ 0z ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamOvam aaBaaaleaacaWG4baabeaakiaacEcacqGHsislcaWGwbWaaSbaaSqa aiaadIhaaeqaaOGaeyypa0JaeyOeI0YaaSaaaeaacaaIYaGaamyBaa qaaiaad2gacqGHRaWkcaWGnbaaaiaahwhacqGHIaYTcaGGOaGaaCOv aiabgkHiTiaahAhacaGGPaGaamyDamaaBaaaleaacaWG4baabeaaki abg2da9iabgkHiTiabeM8a3naadmaabaGaamyqamaaBaaaleaacaWG 4baabeaakiaacEcaciGGZbGaaiyAaiaac6gacaGGOaGaeqyYdCNaam iDaiabgUcaRiabeI7aXnaaBaaaleaacaaIWaGaamiEaaqabaGccqGH RaWkcqaH0oazcqaH4oqCdaWgaaWcbaGaamiEaaqabaGccaGGPaGaey OeI0IaamyqamaaBaaaleaacaWG4baabeaakiGacohacaGGPbGaaiOB aiaacIcacqaHjpWDcaWG0bGaey4kaSIaeqiUde3aaSbaaSqaaiaaic dacaWG4baabeaakiaacMcaaiaawUfacaGLDbaaaeaacaWGwbWaaSba aSqaaiaadMhaaeqaaOGaai4jaiabgkHiTiaadAfadaWgaaWcbaGaam yEaaqabaGccqGH9aqpcqGHsisldaWcaaqaaiaaikdacaWGTbaabaGa amyBaiabgUcaRiaad2eaaaGaaCyDaiabgkci3kaacIcacaWHwbGaey OeI0IaaCODaiaacMcacaWG1bWaaSbaaSqaaiaadMhaaeqaaOGaeyyp a0JaeyOeI0IaeqyYdC3aamWaaeaacaWGbbWaaSbaaSqaaiaadMhaae qaaOGaai4jaiGacohacaGGPbGaaiOBaiaacIcacqaHjpWDcaWG0bGa ey4kaSIaeqiUde3aaSbaaSqaaiaaicdacaWG5baabeaakiabgUcaRi abes7aKjabeI7aXnaaBaaaleaacaWG5baabeaakiaacMcacqGHsisl caWGbbWaaSbaaSqaaiaadMhaaeqaaOGaci4CaiaacMgacaGGUbGaai ikaiabeM8a3jaadshacqGHRaWkcqaH4oqCdaWgaaWcbaGaaGimaiaa dMhaaeqaaOGaaiykaaGaay5waiaaw2faaaqaaiaadAfadaWgaaWcba GaamOEaaqabaGccaGGNaGaeyOeI0IaamOvamaaBaaaleaacaWG6baa beaakiabg2da9iabgkHiTmaalaaabaGaaGOmaiaad2gaaeaacaWGTb Gaey4kaSIaamytaaaacaWH1bGaeyOiGCRaaiikaiaahAfacqGHsisl caWH2bGaaiykaiaadwhadaWgaaWcbaGaamOEaaqabaGccqGH9aqpcq GHsislcqaHjpWDdaWadaqaaiaadgeadaWgaaWcbaGaamOEaaqabaGc caGGNaGaci4CaiaacMgacaGGUbGaaiikaiabeM8a3jaadshacqGHRa WkcqaH4oqCdaWgaaWcbaGaaGimaiaadQhaaeqaaOGaey4kaSIaeqiT dqMaeqiUde3aaSbaaSqaaiaadQhaaeqaaOGaaiykaiabgkHiTiaadg eadaWgaaWcbaGaamOEaaqabaGcciGGZbGaaiyAaiaac6gacaGGOaGa eqyYdCNaamiDaiabgUcaRiabeI7aXnaaBaaaleaacaaIWaGaamOEaa qabaGccaGGPaaacaGLBbGaayzxaaaaaaa@EB94@        (12)

Equations 12 can be solved for either A' or δθ, which ever has not been obtained from solution of equations 11.

A x 'sin(ωt+ θ 0x +δ θ x )= V x ' V x ω + A x sin(ωt+ θ 0x ) s x A y 'sin(ωt+ θ 0y +δ θ y )= V y ' V y ω + A y sin(ωt+ θ 0y ) s y A z 'sin(ωt+ θ 0z +δ θ z )= V z ' V z ω + A z sin(ωt+ θ 0z ) s z A x 'cos(ωt+ θ 0x +δ θ x )= A x cos(ωt+ θ 0x ) c x A y 'cos(ωt+ θ 0y +δ θ y )= A y cos(ωt+ θ 0y ) c y A z 'cos(ωt+ θ 0z +δ θ z )= A z cos(ωt+ θ 0z ) c z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyqam aaBaaaleaacaWG4baabeaakiaacEcaciGGZbGaaiyAaiaac6gacaGG OaGaeqyYdCNaamiDaiabgUcaRiabeI7aXnaaBaaaleaacaaIWaGaam iEaaqabaGccqGHRaWkcqaH0oazcqaH4oqCdaWgaaWcbaGaamiEaaqa baGccaGGPaGaeyypa0JaeyOeI0YaaSaaaeaacaWGwbWaaSbaaSqaai aadIhaaeqaaOGaai4jaiabgkHiTiaadAfadaWgaaWcbaGaamiEaaqa baaakeaacqaHjpWDaaGaey4kaSIaamyqamaaBaaaleaacaWG4baabe aakiGacohacaGGPbGaaiOBaiaacIcacqaHjpWDcaWG0bGaey4kaSIa eqiUde3aaSbaaSqaaiaaicdacaWG4baabeaakiaacMcacqGHHjIUca WGZbWaaSbaaSqaaiaadIhaaeqaaaGcbaGaamyqamaaBaaaleaacaWG 5baabeaakiaacEcaciGGZbGaaiyAaiaac6gacaGGOaGaeqyYdCNaam iDaiabgUcaRiabeI7aXnaaBaaaleaacaaIWaGaamyEaaqabaGccqGH RaWkcqaH0oazcqaH4oqCdaWgaaWcbaGaamyEaaqabaGccaGGPaGaey ypa0JaeyOeI0YaaSaaaeaacaWGwbWaaSbaaSqaaiaadMhaaeqaaOGa ai4jaiabgkHiTiaadAfadaWgaaWcbaGaamyEaaqabaaakeaacqaHjp WDaaGaey4kaSIaamyqamaaBaaaleaacaWG5baabeaakiGacohacaGG PbGaaiOBaiaacIcacqaHjpWDcaWG0bGaey4kaSIaeqiUde3aaSbaaS qaaiaaicdacaWG5baabeaakiaacMcacqGHHjIUcaWGZbWaaSbaaSqa aiaadMhaaeqaaaGcbaGaamyqamaaBaaaleaacaWG6baabeaakiaacE caciGGZbGaaiyAaiaac6gacaGGOaGaeqyYdCNaamiDaiabgUcaRiab eI7aXnaaBaaaleaacaaIWaGaamOEaaqabaGccqGHRaWkcqaH0oazcq aH4oqCdaWgaaWcbaGaamOEaaqabaGccaGGPaGaeyypa0JaeyOeI0Ya aSaaaeaacaWGwbWaaSbaaSqaaiaadQhaaeqaaOGaai4jaiabgkHiTi aadAfadaWgaaWcbaGaamOEaaqabaaakeaacqaHjpWDaaGaey4kaSIa amyqamaaBaaaleaacaWG6baabeaakiGacohacaGGPbGaaiOBaiaacI cacqaHjpWDcaWG0bGaey4kaSIaeqiUde3aaSbaaSqaaiaaicdacaWG 6baabeaakiaacMcacqGHHjIUcaWGZbWaaSbaaSqaaiaadQhaaeqaaa GcbaGaamyqamaaBaaaleaacaWG4baabeaakiaacEcaciGGJbGaai4B aiaacohacaGGOaGaeqyYdCNaamiDaiabgUcaRiabeI7aXnaaBaaale aacaaIWaGaamiEaaqabaGccqGHRaWkcqaH0oazcqaH4oqCdaWgaaWc baGaamiEaaqabaGccaGGPaGaeyypa0JaamyqamaaBaaaleaacaWG4b aabeaakiGacogacaGGVbGaai4CaiaacIcacqaHjpWDcaWG0bGaey4k aSIaeqiUde3aaSbaaSqaaiaaicdacaWG4baabeaakiaacMcacqGHHj IUcaWGJbWaaSbaaSqaaiaadIhaaeqaaaGcbaGaamyqamaaBaaaleaa caWG5baabeaakiaacEcaciGGJbGaai4BaiaacohacaGGOaGaeqyYdC NaamiDaiabgUcaRiabeI7aXnaaBaaaleaacaaIWaGaamyEaaqabaGc cqGHRaWkcqaH0oazcqaH4oqCdaWgaaWcbaGaamyEaaqabaGccaGGPa Gaeyypa0JaamyqamaaBaaaleaacaWG5baabeaakiGacogacaGGVbGa ai4CaiaacIcacqaHjpWDcaWG0bGaey4kaSIaeqiUde3aaSbaaSqaai aaicdacaWG5baabeaakiaacMcacqGHHjIUcaWGJbWaaSbaaSqaaiaa dMhaaeqaaaGcbaGaamyqamaaBaaaleaacaWG6baabeaakiaacEcaci GGJbGaai4BaiaacohacaGGOaGaeqyYdCNaamiDaiabgUcaRiabeI7a XnaaBaaaleaacaaIWaGaamOEaaqabaGccqGHRaWkcqaH0oazcqaH4o qCdaWgaaWcbaGaamOEaaqabaGccaGGPaGaeyypa0JaamyqamaaBaaa leaacaWG6baabeaakiGacogacaGGVbGaai4CaiaacIcacqaHjpWDca WG0bGaey4kaSIaeqiUde3aaSbaaSqaaiaaicdacaWG6baabeaakiaa cMcacqGHHjIUcaWGJbWaaSbaaSqaaiaadQhaaeqaaaaaaa@35E2@       (12)

Using the definitions si and ci and the atan2(y,x) function, we have fail-safe solutions for δθ:

 

δ θ x =atan2( s x , c x )(ωt+ θ 0x ) δ θ y =atan2( s y , c y )(ωt+ θ 0y ) δ θ z =atan2( s z , c z )(ωt+ θ 0z ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeqiTdq MaeqiUde3aaSbaaSqaaiaadIhaaeqaaOGaeyypa0JaamyyaiGacsha caGGHbGaaiOBaiaaikdadaqadaqaaiaadohadaWgaaWcbaGaamiEaa qabaGccaGGSaGaam4yamaaBaaaleaacaWG4baabeaaaOGaayjkaiaa wMcaaiabgkHiTiaacIcacqaHjpWDcaWG0bGaey4kaSIaeqiUde3aaS baaSqaaiaaicdacaWG4baabeaakiaacMcaaeaacqaH0oazcqaH4oqC daWgaaWcbaGaamyEaaqabaGccqGH9aqpcaWGHbGaciiDaiaacggaca GGUbGaaGOmamaabmaabaGaam4CamaaBaaaleaacaWG5baabeaakiaa cYcacaWGJbWaaSbaaSqaaiaadMhaaeqaaaGccaGLOaGaayzkaaGaey OeI0IaaiikaiabeM8a3jaadshacqGHRaWkcqaH4oqCdaWgaaWcbaGa aGimaiaadMhaaeqaaOGaaiykaaqaaiabes7aKjabeI7aXnaaBaaale aacaWG6baabeaakiabg2da9iaadggaciGG0bGaaiyyaiaac6gacaaI YaWaaeWaaeaacaWGZbWaaSbaaSqaaiaadQhaaeqaaOGaaiilaiaado gadaWgaaWcbaGaamOEaaqabaaakiaawIcacaGLPaaacqGHsislcaGG OaGaeqyYdCNaamiDaiabgUcaRiabeI7aXnaaBaaaleaacaaIWaGaam OEaaqabaGccaGGPaaaaaa@8444@

Similarly we obtain the solutions for A':

A x '= A x cos(ωt+ θ 0x ) cos(ωt+ θ 0x +δ θ x ) A y '= A y cos(ωt+ θ 0y ) cos(ωt+ θ 0y +δ θ y ) A z '= A x cos(ωt+ θ 0z ) cos(ωt+ θ 0z +δ θ z ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyqam aaBaaaleaacaWG4baabeaakiaacEcacqGH9aqpdaWcaaqaaiaadgea daWgaaWcbaGaamiEaaqabaGcciGGJbGaai4BaiaacohacaGGOaGaeq yYdCNaamiDaiabgUcaRiabeI7aXnaaBaaaleaacaaIWaGaamiEaaqa baGccaGGPaaabaGaci4yaiaac+gacaGGZbGaaiikaiabeM8a3jaads hacqGHRaWkcqaH4oqCdaWgaaWcbaGaaGimaiaadIhaaeqaaOGaey4k aSIaeqiTdqMaeqiUde3aaSbaaSqaaiaadIhaaeqaaOGaaiykaaaaae aacaWGbbWaaSbaaSqaaiaadMhaaeqaaOGaai4jaiabg2da9maalaaa baGaamyqamaaBaaaleaacaWG5baabeaakiGacogacaGGVbGaai4Cai aacIcacqaHjpWDcaWG0bGaey4kaSIaeqiUde3aaSbaaSqaaiaaicda caWG5baabeaakiaacMcaaeaaciGGJbGaai4BaiaacohacaGGOaGaeq yYdCNaamiDaiabgUcaRiabeI7aXnaaBaaaleaacaaIWaGaamyEaaqa baGccqGHRaWkcqaH0oazcqaH4oqCdaWgaaWcbaGaamyEaaqabaGcca GGPaaaaaqaaiaadgeadaWgaaWcbaGaamOEaaqabaGccaGGNaGaeyyp a0ZaaSaaaeaacaWGbbWaaSbaaSqaaiaadIhaaeqaaOGaci4yaiaac+ gacaGGZbGaaiikaiabeM8a3jaadshacqGHRaWkcqaH4oqCdaWgaaWc baGaaGimaiaadQhaaeqaaOGaaiykaaqaaiGacogacaGGVbGaai4Cai aacIcacqaHjpWDcaWG0bGaey4kaSIaeqiUde3aaSbaaSqaaiaaicda caWG6baabeaakiabgUcaRiabes7aKjabeI7aXnaaBaaaleaacaWG6b aabeaakiaacMcaaaaaaaa@9C33@

Summary

            The result of the animation is that the energy per particle obtained by the ions is greater than that obtained by the electrons.  A reasonable fit to the ion energy density distribution is:

N I (E)= a I Eexp( b I E) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6eadaWgaa WcbaGaamysaaqabaGccaGGOaGaamyraiaacMcacqGH9aqpcaWGHbWa aSbaaSqaaiaadMeaaeqaaOGaamyraiGacwgacaGG4bGaaiiCaiaacI cacqGHsislcaWGIbWaaSbaaSqaaiaadMeaaeqaaOGaamyraiaacMca aaa@4575@

where aI and bI  are parameters found by a 2-dimensional Newton-Raphson technique that minimizes the residual errors between NI(E) and the ions per energy bin found by iteration of collisions.  Similarly the electron energy density must be fit by a distribution like the following:

N E (E)=exp( b E E)(1 a E E) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6eadaWgaa WcbaGaamyraaqabaGccaGGOaGaamyraiaacMcacqGH9aqpciGGLbGa aiiEaiaacchacaGGOaGaeyOeI0IaamOyamaaBaaaleaacaWGfbaabe aakiaadweacaGGPaGaaiikaiaaigdacqGHsislcaWGHbWaaSbaaSqa aiaadweaaeqaaOGaamyraiaacMcaaaa@486A@

It is presently believe that the reason that the ions end up with more energy per particle is that they can store any energy that they obtain in their restoring potentials.