Eddy Current Drag for A Magnet in A Conductive Pipe

Introduction

            If you slide a magnet on a sheet of copper (a good conductor) it will slow down much more quickly than when sliding on a sheet of plastic (a poor conductor) even when the surfaces of both sheets have the same coefficient of friction.  The reason is that the moving magnet creates large eddy currents due to the change of change of magnetic flux in the copper sheet.  The present document concerns itself with a more efficient geometry than a sheet as shown below.    

Figure 1: Cylindrical magnet in a vertical copper pipe.  When the magnet moves down the pipe, it creates eddy currents that limit its falling speed, v, to a constant value.

What is interesting about this problem is that, because of symmetry, the magnet by itself would not produce magnetic fields due to eddy currents that would resist the force of gravity.  However, when the electromotive potential due to the eddy currents adds new eddy currents to those of the falling magnet, the symmetry is broken and a magnetic force that opposes gravity is formed. 

 

Motion of the magnet

The Newton's law differential equation is

m dv dt =mgbv MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaWcaa qaaiaadsgacaWG2baabaGaamizaiaadshaaaGaeyypa0JaamyBaiaa dEgacqGHsislcaWGIbGaamODaaaa@4066@  

(1.1)

where m is the magnet mass, v is the downward speed, g is the acceleration of gravity, and bv is the velocity-dependent drag force due to eddy currents in the pipe.

 

 

 

 

The solution for this equation is

 

v= mg b [ 1exp( b m t ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAhacqGH9a qpdaWcaaqaaiaad2gacaWGNbaabaGaamOyaaaadaWadaqaaiaaigda cqGHsislciGGLbGaaiiEaiaacchadaqadaqaaiabgkHiTmaalaaaba GaamOyaaqaaiaad2gaaaGaamiDaaGaayjkaiaawMcaaaGaay5waiaa w2faaaaa@468E@  

(1.2)

So that, for reasonably large drag forces, v comes to a steady state value very quickly.

What is the value of b? Experimentally, for a 7 mm diameter copper tube, with 1 mm wall thickness and for approximately 5 mm diameter magnets of 7 mm length and approximately 1 Tesla strength at their poles, the steady state speed vss =mg/b is about 60 mm/second.  Since mg is about 0.013 Newton, the value of b must be:

b=mg/ v ss =0.013/0.06=0.2Newtonsec/meter MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkgacqGH9a qpcaWGTbGaam4zaiaac+cacaWG2bWaaSbaaSqaaiaadohacaWGZbaa beaakiabg2da9iaaicdacaGGUaGaaGimaiaaigdacaaIZaGaai4lai aaicdacaGGUaGaaGimaiaaiAdacqGH9aqpcaaIWaGaaiOlaiaaikda caaMc8UaamOtaiaadwgacaWG3bGaamiDaiaad+gacaWGUbGaeyOeI0 Iaci4CaiaacwgacaGGJbGaai4laiaad2gacaWGLbGaamiDaiaadwga caWGYbaaaa@5938@  

(1.3)

Of course this drag coefficient results from the eddy currents induced in the copper pipe by the moving magnet.  The power dissipated by these currents while the magnet moves through the earth's gravitational field without speeding up must be:

P dis = dE dt =mg v ss MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaWgaa WcbaGaamizaiaadMgacaWGZbaabeaakiabg2da9maalaaabaGaamiz aiaadweaaeaacaWGKbGaamiDaaaacqGH9aqpcaWGTbGaam4zaiaadA hadaWgaaWcbaGaam4Caiaadohaaeqaaaaa@446B@  

(1.4)

and this power has to be

P= ρ cu 2πrJ (r,z) 2 drdz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfacqGH9a qpcqaHbpGCdaWgaaWcbaGaam4yaiaadwhaaeqaaOWaa8qaaeaacaaI YaGaeqiWdaNaamOCaiaadQeacaGGOaGaamOCaiaacYcacaWG6bGaai ykamaaCaaaleqabaGaaGOmaaaakiaadsgacaWGYbGaamizaiaadQha aSqabeqaniabgUIiYdaaaa@4A92@  

(1.5)

where ρcu is the resistivity of copper, J is the current density in the copper, and the integral is over the circumferential cross-section of the copper pipe.                               

            The next important question is how the current density, J, arises.  That is due to Lenz's law which states:

V circumferential = d Φ B dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAfadaWgaa WcbaGaam4yaiaadMgacaWGYbGaam4yaiaadwhacaWGTbGaamOzaiaa dwgacaWGYbGaamyzaiaad6gacaWG0bGaamyAaiaadggacaWGSbaabe aakiabg2da9iabgkHiTmaalaaabaGaamizaiabfA6agnaaBaaaleaa caWGcbaabeaaaOqaaiaadsgacaWG0baaaaaa@4C49@  

(1.6)

where

Φ B (r)= 0 r 2πr'B(r')dr ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfA6agnaaBa aaleaacaWGcbaabeaakiaacIcacaGGYbGaaiykaiabg2da9maapeha baGaaGOmaiabec8aWjaadkhacaGGNaGaamOqaiaacIcacaWGYbGaai 4jaiaacMcacaWGKbGaamOCaaWcbaGaaGimaaqaaiaadkhaa0Gaey4k IipakiaacEcaaaa@4A43@  

(1.7)

and it is Vcircumferential that induces the current density:

J ϕ (r)= σ cu Φ circumferential 2πr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQeadaWgaa WcbaGaeqy1dygabeaakiaacIcacaWGYbGaaiykaiabg2da9iabeo8a ZnaaBaaaleaacaWGJbGaamyDaaqabaGcdaWcaaqaaiabfA6agnaaBa aaleaacaWGJbGaamyAaiaadkhacaWGJbGaamyDaiaad2gacaWGMbGa amyzaiaadkhacaWGLbGaamOBaiaadshacaWGPbGaamyyaiaadYgaca aMc8oabeaaaOqaaiaaikdacqaHapaCcaWGYbaaaaaa@54AC@  

(1.8)

Just one more equation is needed since we don't have dΦB/dt:

d Φ B dt = v ss d Φ b dz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiabfA6agnaaBaaaleaacaWGcbaabeaaaOqaaiaadsgacaWG0baa aiabg2da9iaadAhadaWgaaWcbaGaam4CaiaadohaaeqaaOWaaSaaae aacaWGKbGaeuOPdy0aaSbaaSqaaiaadkgaaeqaaaGcbaGaamizaiaa dQhaaaaaaa@44DC@  

(1.9)

Computing the Magnetic field due to Magnet and Pipe Combined

The partial differential equation for the magnetic field is:

×[ (×A-P) μ ]+J=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgEGirlaahE nacaGGBbWaaSaaaeaacaGGOaGaey4bIeTaaC41aiaahgeacaWHTaGa aCiuaiaacMcaaeaacqaH8oqBaaGaaiyxaiabgUcaRiaahQeacqGH9a qpcaaIWaaaaa@4664@  

(1.10)

 

where A is the vector potential, P is the polarization (related to magnetization and often called the remanence field), and μ is the permeability.  We assume that P is constant in the permanent magnet and solve this equation for A.  Then the magnetic induction is:

B=×A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahkeacaWH9a Gaey4bIeTaaC41aiaahgeaaaa@3B2C@  

(1.11)

Since the whole problem is axi-symmetric, we solve it in cylindrical coordinates using finite element methods.  A typical result is shown below in Figure 2.

Figure 2:  Showing a contour plot of the axial magnetic induction, Bz, due to a magnet of polarixation P=1 Tesla in a copper pipe .  The contour lines are skewed vertically because of the eddy currents in the copper pipe.

 

The opposing field exerted by the eddy currents in the pipe

Since the magnet moves at constant velocity inside the pipe, the opposing force must be the weight of the magnet:

F eddycurrent =mg MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaamyzaiaadsgacaWGKbGaamyEaiaaykW7caWGJbGaamyDaiaa dkhacaWGYbGaamyzaiaad6gacaWG0baabeaakiabg2da9iaad2gaca WGNbaaaa@45BB@  

(1.12)

The mass of the magnet is computed by the equation

m=ρV=ρπ r m 2 h m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gacqGH9a qpcqaHbpGCcaWGwbGaeyypa0JaeqyWdiNaeqiWdaNaamOCamaaDaaa leaacaWGTbaabaGaaGOmaaaakiaadIgadaWgaaWcbaGaamyBaaqaba aaaa@43E8@  

(1.13)

where ρ is the density (kg-m-2) of the magnet material, rm is the magnet radius and hm is its height.

A formula for the force provided by the interaction of the magnet field and the eddy current field is:

F em = B m B e A m 2 μ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaamyzaiaad2gaaeqaaOGaeyypa0ZaaSaaaeaacaWGcbWaaSba aSqaaiaad2gaaeqaaOGaamOqamaaBaaaleaacaWGLbaabeaakiaadg eadaWgaaWcbaGaamyBaaqabaaakeaacaaIYaGaeqiVd02aaSbaaSqa aiaaicdaaeqaaaaaaaa@42FA@  

(1.14)

 where Bm is the permanent magnet's field (about 1 Tesla), Be is the eddy current field, and Am is the magnet cross-sectional area.  Setting Fem equal to mg provides the equation for Be.

B e = 2 μ 0 mg B m A m = 2 μ 0 ρ h m g B m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkeadaWgaa WcbaGaamyzaaqabaGccqGH9aqpdaWcaaqaaiaaikdacqaH8oqBdaWg aaWcbaGaaGimaaqabaGccaWGTbGaam4zaaqaaiaadkeadaWgaaWcba GaamyBaaqabaGccaWGbbWaaSbaaSqaaiaad2gaaeqaaaaakiabg2da 9maalaaabaGaaGOmaiabeY7aTnaaBaaaleaacaaIWaaabeaakiabeg 8aYjaadIgadaWgaaWcbaGaamyBaaqabaGccaWGNbaabaGaamOqamaa BaaaleaacaWGTbaabeaaaaaaaa@4D23@  

(1.15)

For our 1 Tesla magnet, Be turns out to be 3.3x10-11 Tesla.