Empirical Calculation of Mean Free Paths

Introduction

            Mean free path is an important parameter for the transport properties of a gas.  The transport properties include thermal conductivity, gas mixing, and viscosity.  These properties involve diffusion which is basically a random walk process.  In this random walk process, the mean step size is the mean free path.  To compute the rate of diffusion, one has to know the number of collisions per second as well.  See Appendix for information on mixing rate versus time.

 

How the mean free path is computed in this program

            Basically the mean free path is the average distance traveled by an atom between hard sphere collisions.  For finite size containers this distance must include the distance from the last atom-atom collision to a collision with a wall as well as the distance between the wall collision and the next atom-atom collision.  For this reason the program saves the times of atom-atom collisions and the speed after that collision and the new mean free distance becomes the result:

l=s(t't) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYgacqGH9a qpcaWGZbGaaiikaiaadshacaGGNaGaeyOeI0IaamiDaiaacMcaaaa@3DBD@  

(1.1)

where l is the distance, s is the speed, t' is the time of the new collision and t is the time of the old collision.

Of course, an atom-atom collision always involves 2 atoms so there are 2 such distances, l1 and l2, for each collision.  To compute the mean free path we add both l's to a distance sum:

l sum ' = l sum + l 1 + l 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYgadaqhaa WcbaGaam4CaiaadwhacaWGTbaabaGaai4jaaaakiabg2da9iaadYga daWgaaWcbaGaam4CaiaadwhacaWGTbaabeaakiabgUcaRiaadYgada WgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGSbWaaSbaaSqaaiaaikda aeqaaaaa@4532@  

(1.2)

We also increment a collision counter,

n c ' = n c +1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gadaqhaa WcbaGaam4yaaqaaiaacEcaaaGccqGH9aqpcaWGUbWaaSbaaSqaaiaa dogaaeqaaOGaey4kaSIaaGymaaaa@3D5C@  

(1.3)

The mean free path, λ, is then computed, after a very large number of collisions, as:

λ= l sum ' n c ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSjabg2 da9maalaaabaGaamiBamaaDaaaleaacaWGZbGaamyDaiaad2gaaeaa caGGNaaaaaGcbaGaamOBamaaDaaaleaadaWgaaadbaGaam4yaaqaba aaleaacaGGNaaaaaaaaaa@4057@  

(1.4)

Theory for mean free path

            The usual expression in 3 dimensions is that the mean free path is

λ= 1 nσ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSjabg2 da9maalaaabaGaaGymaaqaaiaad6gacqaHdpWCaaaaaa@3C26@  

(1.5)

where n is the density of atoms per unit volume and σ is their collisional cross section area.  For 3 dimensions the expression for σ for hard spheres is

σ=4π r 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo8aZjabg2 da9iaaisdacqaHapaCcaWGYbWaaWbaaSqabeaacaaIYaaaaaaa@3D0F@  

(1.6)

where r is the radius of  the hard sphere.  For a mixture of two different atoms of different radii, the expression of σ is:

σ=π ( r a + r b ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo8aZjabg2 da9iabec8aWjaacIcacaWGYbWaaSbaaSqaaiaadggaaeqaaOGaey4k aSIaamOCamaaBaaaleaacaWGIbaabeaakiaacMcadaahaaWcbeqaai aaikdaaaaaaa@41BC@  

(1.7)

When the atomic species have different densities then n becomes:

n= 2 n a n b n a + n b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gacqGH9a qpdaWcaaqaaiaaikdacaWGUbWaaSbaaSqaaiaadggaaeqaaOGaamOB amaaBaaaleaacaWGIbaabeaaaOqaaiaad6gadaWgaaWcbaGaamyyaa qabaGccqGHRaWkcaWGUbWaaSbaaSqaaiaadkgaaeqaaaaaaaa@41C6@  

(1.8)

 

In 2 dimensions the density is the number of atoms per unit area, n2, and the collision area becomes a simple length.   Then the expression for mean free path becomes:

λ 2D = 1 4 n 2 ( r a + r b ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSnaaBa aaleaacaaIYaGaamiraaqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaa caaI0aGaamOBamaaBaaaleaacaaIYaaabeaakiaacIcacaWGYbWaaS baaSqaaiaadggaaeqaaOGaey4kaSIaamOCamaaBaaaleaacaWGIbaa beaakiaacMcaaaaaaa@4430@  

(1.9)

Appendix

            If we have an initial setup where atoms of a given type are all concentrated at x=0 while atoms of the other type are spread out over the entire x domain, then the rate of the first type's spreading, mixing or heat conduction will be proportional to the square root of the rate of collisions that are made.  For a single atom, the rate of collisions will be

n ˙ = < v x > λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqad6gagaGaai abg2da9maalaaabaGaeyipaWJaamODamaaBaaaleaacaWG4baabeaa kiabg6da+aqaaiabeU7aSbaaaaa@3DEB@  

(1.10)

where <vx> is the average x speed of the atom.  The number of collisions in a given time interval, t, will then be:

N(t)= n ˙ t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6eacaGGOa GaamiDaiaacMcacqGH9aqpceWGUbGbaiaacaWG0baaaa@3C0B@  

(1.11)

The rate of spreading is proportional to the square root of N(t) times the step size which here is the mean free path:

δx(t)=N(t)λ= < v x > λ t λ= < v x >tλ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaadI hacaGGOaGaamiDaiaacMcacqGH9aqpcaWGobGaaiikaiaadshacaGG PaGaeq4UdWMaeyypa0ZaaOaaaeaadaWcaaqaaiabgYda8iaadAhada WgaaWcbaGaamiEaaqabaGccqGH+aGpaeaacqaH7oaBaaGaamiDaaWc beaakiabeU7aSjabg2da9maakaaabaGaeyipaWJaamODamaaBaaale aacaWG4baabeaakiabg6da+iaadshacqaH7oaBaSqabaaaaa@529C@  

(1.12)