Oscillating Capacitor Slab

Introduction

            The electric polarization of a material is important in many applications with the most well-known being a capacitor.  In this animation and this document, we explore the polarization phenomenon from the induced electric field energy standpoint.  We contrive a composite slab of dielectric that will tend to oscillate between the parallel plates of a simple capacitor because of the increase of dielectric constant (permittivity) with respect to distance from the horizontal center of the slab. 

Figures

Figure 1:Showing the details of the animation.  Please read the embedded notes.  Also note that the orientation of the dipoles enveloped by the capacitor plates is more along the electric field direction while, outside the plates, the orientation is random.

 

Relation between Polarization and Dipole Moments

            The electric polarization of a material is the result of the electric field's either inducing dipole moments from atoms or molecules or reorienting the dipole moments of either ionic or covalently bonded molecules so that, on average, they become better aligned with the applied electric field.  Since it is easier to visualize the latter, that is model that will be used in this animation.  The dipole moment is made up of two separated charges of opposite sign and is defined mathematically as:

m=qd MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaah2gacqGH9a qpcaWGXbGaaCizaaaa@39CA@  

where q is the charge at the two ends of vector, d, and m is a vector that points in the direction from the negative (shown as black) to the positive charge (shown as red).

When an electric field is applied to the dipole it creates a torque that tends to align the dipole with the field

τ=m×E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahs8acqGH9a qpcaWHTbGaey41aqRaaCyraaaa@3C1C@

so that the dipole and field end up pointing in the same direction.  However, the dipoles of the type we are considering are continuously undergoing thermally induced rotation, so that the alignment is never perfect.  But since the torque is proportional to the product of the dipole moment and the electric field, the average alignment becomes better as either of these two entities increase.  Note that, for the same charge values q, the dipole moment (and the torque) becomes larger when the length of d is increased.  That is natural since, for longer d, the leverage that the electric field applies is larger and alignment is greater.

The polarizability of the medium is proportional to the number of dipoles per unit volume times their average dipole moment.  The dipole moment per unit volume, p, that is induced by an electric field is:

p=αE MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahchacqGH9a qpcqaHXoqycaWHfbaaaa@3A57@

where obviously αE is the product of the density of dipoles, nm, times their average moment and times the component of the m that points along E.

αE= n m <mcos( θ Em )> MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHjaadw eacqGH9aqpcaWGUbWaaSbaaSqaaiaad2gaaeqaaOGaeyipaWJaamyB aiGacogacaGGVbGaai4CaiaacIcacqaH4oqCdaWgaaWcbaGaamyrai aad2gaaeqaaOGaaiykaiabg6da+aaa@4647@

where θEm is the angle between E and m

A more usual way of expressing the polarization is to write:

P=(ε ε 0 )E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahcfacqGH9a qpcaGGOaGaeqyTduMaeyOeI0IaeqyTdu2aaSbaaSqaaiaaicdaaeqa aOGaaiykaiaahweaaaa@3F1C@

where ε is the permittivity of the medium and ε0 is the permittivity of vacuum.  Note, from the equation for capacitance of a parallel plate capacitor

Q=CV= εA d V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgfacqGH9a qpcaWGdbGaamOvaiabg2da9maalaaabaGaeqyTduMaamyqaaqaaiaa dsgaaaGaamOvaaaa@3EB1@

where Q is the capacitor charge, V the voltage, A the area of the plates, and d is the separation of the plates

that the units of ε are Coulombs Volt-1 meter-1.  Also note that Electric field, E, has units Volts meter-1.  Then the units of P are Coulombs meter-1 which are the same as the units of p=αE.  So P is really synonymous with p and is the dipole moment per unit volume.

 

 

Capacitor Energy

            For a simple variable dielectric constant slab the capacitance is

C= L d ( ε 0 |x|+ε(w|x| ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoeacqGH9a qpdaWcaaqaaiaadYeaaeaacaWGKbaaamaabmaabaGaeqyTdu2aaSba aSqaaiaaicdaaeqaaOGaaiiFaiaadIhacaGG8bGaey4kaSIaeqyTdu MaaiikaiaadEhacqGHsislcaGG8bGaamiEaiaacYhaaiaawIcacaGL Paaaaaa@48BB@

where x is the displacement of the slab with respect to its centered position and w is the width of the slab.

The energy with the voltage, V, applied to the capacitor is

U(x)= C 2 V 2 = V 2 L 2d ( ε 0 |x|+ε(w|x| ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwfacaGGOa GaamiEaiaacMcacqGH9aqpdaWcaaqaaiaadoeaaeaacaaIYaaaaiaa dAfadaahaaWcbeqaaiaaikdaaaGccqGH9aqpdaWcaaqaaiaadAfada ahaaWcbeqaaiaaikdaaaGccaWGmbaabaGaaGOmaiaadsgaaaWaaeWa aeaacqaH1oqzdaWgaaWcbaGaaGimaaqabaGccaGG8bGaamiEaiaacY hacqGHRaWkcqaH1oqzcaGGOaGaam4DaiabgkHiTiaacYhacaWG4bGa aiiFaaGaayjkaiaawMcaaaaa@5215@

The force on the slab is -dU/dx:

dU dx = V 2 L 2d d dx ( ε 0 |x|+ε(w|x| )= V 2 L 2d ( ε 0 ε)Sign(x) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiaadwfaaeaacaWGKbGaamiEaaaacqGH9aqpcqGHsisldaWcaaqa aiaadAfadaahaaWcbeqaaiaaikdaaaGccaWGmbaabaGaaGOmaiaads gaaaWaaSaaaeaacaWGKbaabaGaamizaiaadIhaaaWaaeWaaeaacqaH 1oqzdaWgaaWcbaGaaGimaaqabaGccaGG8bGaamiEaiaacYhacqGHRa WkcqaH1oqzcaGGOaGaam4DaiabgkHiTiaacYhacaWG4bGaaiiFaaGa ayjkaiaawMcaaiabg2da9iabgkHiTmaalaaabaGaamOvamaaCaaale qabaGaaGOmaaaakiaadYeaaeaacaaIYaGaamizaaaacaGGOaGaeqyT du2aaSbaaSqaaiaaicdaaeqaaOGaeyOeI0IaeqyTduMaaiykaiaado facaWGPbGaam4zaiaad6gacaGGOaGaamiEaiaacMcaaaa@64C8@

which would indicate a force in the +x direction when ε>ε0 and x>0.  This is just a confirmation that the slab tends to go to the lowest energy state which means that it would be ejected from the plates.  We can invert this situation if we had 2 connected slabs with a gap along the x direction between them.

 

If we desire to have an oscillating slab, we instead assume that the permittivity varies proportionally to x2.  In the frame of reference of the capacitor slab where xs=0 at the center of the slab we assume

 

ε( x s )= ε 0 ( 1+ ε m ε 0 4| x s | 2 w 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew7aLjaacI cacaWG4bWaaSbaaSqaaiaadohaaeqaaOGaaiykaiabg2da9iabew7a LnaaBaaaleaacaaIWaaabeaakmaabmaabaGaaGymaiabgUcaRmaala aabaGaeqyTdu2aaSbaaSqaaiaad2gaaeqaaaGcbaGaeqyTdu2aaSba aSqaaiaaicdaaeqaaaaakmaalaaabaGaaGinaiaacYhacaWG4bWaaS baaSqaaiaadohaaeqaaOGaaiiFamaaCaaaleqabaGaaGOmaaaaaOqa aiaadEhadaahaaWcbeqaaiaaikdaaaaaaaGccaGLOaGaayzkaaaaaa@4F2A@

<ε(x)>= x s =xw/2 x s =w/2x ε( x s ) dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgYda8iabew 7aLjaacIcacaWG4bGaaiykaiabg6da+iabg2da9maapedabaGaeqyT duMaaiikaiaadIhadaWgaaWcbaGaam4CaaqabaGccaGGPaaaleaaca WG4bWaaSbaaWqaaiaadohaaeqaaSGaeyypa0JaeyOeI0IaamiEaiab gkHiTiaadEhacaGGVaGaaGOmaaqaaiaadIhadaWgaaadbaGaam4Caa qabaWccqGH9aqpcaWG3bGaai4laiaaikdacqGHsislcaWG4baaniab gUIiYdGccaWGKbGaamiEaaaa@563B@

 

Understanding the Origin of Electric Field Energy Density

            The force on the capacitor slab depends on the derivative of the electric energy density.  We've learned at our earliest physics classes that the electric energy density is given by

U= 1 2 ε E 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwfacqGH9a qpdaWcaaqaaiaaigdaaeaacaaIYaaaaiabew7aLjaadweadaahaaWc beqaaiaaikdaaaaaaa@3CAC@

but I'd like to show where this energy comes from when charging a simple parallel plate capacitor.

            I will start from the simplest assumption, that force between small charged particles is inversely proportional to the square of their distance of separation, and show that the energy needed to increase the total charge on a capacitor plate by a small amount, q, corresponds to the change of electric field energy in the capacitor.  The energy needed to add q to the plate is, of course, provided by the power (voltage) source to which the capacitor is connected.

The y component of the force between q and a small fraction of the surface charge density, σ, already on the plate is given by the expression:

d F y = 2πσqyrdr 4π ε 0 ( r 2 + y 2 ) 3 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgacaWGgb WaaSbaaSqaaiaadMhaaeqaaOGaeyypa0ZaaSaaaeaacaaIYaGaeqiW daNaeq4WdmNaamyCaiaadMhacaWGYbGaamizaiaadkhaaeaacaaI0a GaeqiWdaNaeqyTdu2aaSbaaSqaaiaaicdaaeqaaOWaaeWaaeaacaWG YbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamyEamaaCaaaleqaba GaaGOmaaaaaOGaayjkaiaawMcaamaaCaaaleqabaWaaSaaaeaacaaI ZaaabaGaaGOmaaaaaaaaaaaa@4FFE@

where 2πσrdr is the charge in a ring, of width dr, of surface charge centered under the charge q to be added.

To obtain the total force we must integrate over r.  We first note that the differential

d dr 1 r 2 + y 2 = r ( r 2 + y 2 ) 3 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaaqaaiaadsgacaWGYbaaamaalaaabaGaaGymaaqaamaakaaabaGa amOCamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadMhadaahaaWcbe qaaiaaikdaaaaabeaaaaGccqGH9aqpcqGHsisldaWcaaqaaiaadkha aeaadaqadaqaaiaadkhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkca WG5bWaaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaaWaaWbaaSqa beaadaWcaaqaaiaaiodaaeaacaaIYaaaaaaaaaaaaa@4952@

and therefore we can conclude that for a single capacitor plate.

F y1 = 2πσqy 4π ε 0 ( r 2 + y 2 ) | 0 = σ 2 ε 0 q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaamyEaiaaigdaaeqaaOGaeyypa0JaeyOeI0IaaGPaVpaaeiaa baWaaSaaaeaacaaIYaGaeqiWdaNaeq4WdmNaamyCaiaadMhaaeaaca aI0aGaeqiWdaNaeqyTdu2aaSbaaSqaaiaaicdaaeqaaOWaaeWaaeaa daGcaaqaaiaadkhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWG5b WaaWbaaSqabeaacaaIYaaaaaqabaaakiaawIcacaGLPaaaaaaacaGL iWoadaqhaaWcbaGaaGimaaqaaiabg6HiLcaakiabg2da9maalaaaba Gaeq4WdmhabaGaaGOmaiabew7aLnaaBaaaleaacaaIWaaabeaaaaGc caWGXbaaaa@58E5@

However, since we have 2 oppositely charged capacitor plates we must double Fy and then we have:

F y2 = σ ε 0 q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaamyEaiaaikdaaeqaaOGaeyypa0ZaaSaaaeaacqaHdpWCaeaa cqaH1oqzdaWgaaWcbaGaaGimaaqabaaaaOGaamyCaaaa@3F0C@

The energy required to move q from one capacitor plate to the other is then:

δU= 0 d F y2 dy = σ ε 0 qd MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaadw facqGH9aqpdaWdXaqaaiaadAeadaWgaaWcbaGaamyEaiaaikdaaeqa aOGaamizaiaadMhaaSqaaiaaicdaaeaacaWGKbaaniabgUIiYdGccq GH9aqpdaWcaaqaaiabeo8aZbqaaiabew7aLnaaBaaaleaacaaIWaaa beaaaaGccaWGXbGaamizaaaa@4937@

where d is the separation of the capacitor plates.  The change in average surface charge density on the plates due to adding q is:

δσ= q A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjabeo 8aZjabg2da9maalaaabaGaamyCaaqaaiaadgeaaaaaaa@3C25@

where A is the surface area of the plate. Then we can write that

 

δU= Ad ε 0 σδσ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaadw facqGH9aqpdaWcaaqaaiaadgeacaWGKbaabaGaeqyTdu2aaSbaaSqa aiaaicdaaeqaaaaakiabeo8aZjabes7aKjabeo8aZbaa@42F1@

and then we can integrate both sides over U and σ to obtain:

U= σ 2 A 4 ε 0 d= Q 2 d A ε 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwfacqGH9a qpdaWcaaqaaiabeo8aZnaaCaaaleqabaGaaGOmaaaakiaadgeaaeaa caaI0aGaeqyTdu2aaSbaaSqaaiaaicdaaeqaaaaakiaadsgacqGH9a qpdaWcaaqaaiaadgfadaahaaWcbeqaaiaaikdaaaGccaWGKbaabaGa amyqaiabew7aLnaaBaaaleaacaaIWaaabeaaaaaaaa@46B0@

We recognize that the quantity Aε0/d is the capacitance, C, and therefore we can rewrite:

U= Q 2 2C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwfacqGH9a qpdaWcaaqaaiaadgfadaahaaWcbeqaaiaaikdaaaaakeaacaaIYaGa am4qaaaaaaa@3B28@

which is the standard expression for the total energy stored in a capacitor.  The energy density in the capacitor is obviously

u= U Ad = Q 2 2 A 2 ε 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwhacqGH9a qpdaWcaaqaaiaadwfaaeaacaWGbbGaamizaaaacqGH9aqpdaWcaaqa aiaadgfadaahaaWcbeqaaiaaikdaaaaakeaacaaIYaGaamyqamaaCa aaleqabaGaaGOmaaaakiabew7aLnaaBaaaleaacaaIWaaabeaaaaaa aa@4265@

Further we know that the electric field in a parallel plate capacitor is given by

E= σ ε 0 = Q A ε 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweacqGH9a qpdaWcaaqaaiabeo8aZbqaaiabew7aLnaaBaaaleaacaaIWaaabeaa aaGccqGH9aqpdaWcaaqaamaalaaabaGaamyuaaqaaiaadgeaaaaaba GaeqyTdu2aaSbaaSqaaiaaicdaaeqaaaaaaaa@4174@

And the energy density in terms of the electric field is given by:

u= 1 2 ε 0 E 2 = Q 2 2 A 2 ε 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwhacqGH9a qpdaWcaaqaaiaaigdaaeaacaaIYaaaaiabew7aLnaaBaaaleaacaaI WaaabeaakiaadweadaahaaWcbeqaaiaaikdaaaGccqGH9aqpdaWcaa qaaiaadgfadaahaaWcbeqaaiaaikdaaaaakeaacaaIYaGaamyqamaa CaaaleqabaGaaGOmaaaakiabew7aLnaaBaaaleaacaaIWaaabeaaaa aaaa@45A7@

in agreement with the expression we obtained by integrating the energy needed to assemble the charges on the capacitor plates.

            So this gives from first principles (at least for the simple case of a parallel plate capacitor) a derivation of the origin of electric energy density expression that we always use.