Animation of Partial Pressure of Gases

Introduction

            This animation shows the evolution from atomic collisions of the partial pressure results associated with the perfect gas law.  Importantly it also shows how to extend the usual three dimensional result to two and one dimension.

Standard Perfect Gas Laws

            The total pressure due to a mixture of gases in a container is given by:   

            PV=NkT MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfacaWGwb Gaeyypa0JaamOtaiaadUgacaWGubaaaa@3B3D@                                            (1)

where P is the pressure (N m-2), V is the volume (m3) N is the total number of atoms in the volume, k is Boltzmann's constant, and T is the absolute temperature in degrees Kelvin. The partial pressure law is entirely similar to equation except that it expresses the pressure due to each atomic type, m, in the container.

            P m V= N m kT MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaWgaa WcbaGaamyBaaqabaGccaWGwbGaeyypa0JaamOtamaaBaaaleaacaWG TbaabeaakiaadUgacaWGubaaaa@3D8D@                                         (2)

where Pm is the pressure due to the mth atomic type and Nm is the total number of atoms of the mth type in the container.  In equations 1 and 2 it is assumed that atom-atom collisions have caused the temperatures (average energies) of all the atoms to become equal.  In this animation, we will start with either all the atoms of a given type with either random or equal energies.  The energy distributions of the atoms will, after a time, become the normal Boltzmann exponential where the exponential coefficient is the average energy.

            Van der Waals recognized that in denser gases the total volume of the N atoms could become a substantial fraction of the total volume of the container and this fraction could modify equation 1 causing the pressure to have a more complicated dependence on N, atomic radius and volume.  The modification is especially important when the gas density approaches that for a phase transition to a liquid. For the animation presented here we will assume that the gas is rarified enough that the modifications presented in the above link are not needed.

            The perfect gas law presented in equation 1 is derived in the Appendix A for 3, 2, and 1 dimensional gases.

            For completeness, since the perfect gas laws depend on energy equi-partition, Appendix B discusses how the energy distribution is computed from hard sphere collision kinetics and Appendix C discusses the hard sphere collision kinetics themselves.

 

Figures

Figure 1: Showing results for 3D gas with 500 red atoms and 400 blue atoms.  The estimated pressures are from and Appendix A. The actual pressures Vs time are computed from the momentum transferred to the walls of the container.  The other curves are the energy distributions.  The difference between estimated and actual is due to the rather small number of atoms in the samples.

 

Figure 2: Same as Figure 1 except for being a 1D gas with 200 red atoms and 250 blue atoms.  The results are for 20 Sub-Domains.

 

Computing the Pressure from the Motion of the Atoms

Three Dimensions

            The pressure may be gauged by the force that the walls of the container has to apply in order to keep atoms that hit the wall inside the container.  For this animation it will be assumed that the wall receives no energy from the atoms that collide with it.  To keep it simple, we will consider the container to be a box of width X, height Y and depth Z.  The amount of momentum change, dp, needed to reverse the motion of an atom colliding with the wall at x=X is

dp=2m v x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgacaWGWb Gaeyypa0JaaGOmaiaad2gacaWG2bWaaSbaaSqaaiaadIhaaeqaaaaa @3CA1@

where m is the mass of the atom and vx is the x component of its velocity.  If δn atoms hit an area δA of the X wall in time δt then the force per unit area (pressure) needed to reverse the x component of the momenta of all of them is:

P=2 δn δtδA m< v x > MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfacqGH9a qpcaaIYaWaaSaaaeaacqaH0oazcaWGUbaabaGaeqiTdqMaamiDaiab es7aKjaadgeaaaGaamyBaiabgYda8iaadAhadaWgaaWcbaGaamiEaa qabaGccqGH+aGpaaa@455F@                              (3)

 

where <vx> is the average x component of the velocity for the n particles.  Equation 3 has units of force per unit area and is the equation used by the animation program to compute the pressure when considering a 3 dimensional gas.  The total area of our container is just

A=2(XY+XZ+YZ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgeacqGH9a qpcaaIYaGaaiikaiaadIfacaWGzbGaey4kaSIaamiwaiaadQfacqGH RaWkcaWGzbGaamOwaiaacMcaaaa@40C4@

The program sums up all the collision momentum changes for all 6 walls during a single time interval and computes equation 3.

P= 2m δt ( i v xi + j v yj + k v zk ) 2(XY+XZ+YZ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfacqGH9a qpdaWcaaqaaiaaikdacaWGTbaabaGaeqiTdqMaamiDaaaadaWcaaqa amaabmaabaWaaabuaeaacaWG2bWaaSbaaSqaaiaadIhacaWGPbaabe aaaeaacaWGPbaabeqdcqGHris5aOGaey4kaSYaaabuaeaacaWG2bWa aSbaaSqaaiaadMhacaWGQbaabeaaaeaacaWGQbaabeqdcqGHris5aO Gaey4kaSYaaabuaeaacaWG2bWaaSbaaSqaaiaadQhacaWGRbaabeaa aeaacaWGRbaabeqdcqGHris5aaGccaGLOaGaayzkaaaabaGaaGOmai aacIcacaWGybGaamywaiabgUcaRiaadIfacaWGAbGaey4kaSIaamyw aiaadQfacaGGPaaaaaaa@5AFB@                                 (4)

Two Dimensions

            For a two dimensional gas the depth can be considered to have gone toward infinity so that the areas of the Z walls are negligible compared to the X and Y walls.  Then equation 4 becomes:

  P 2D = 2m δtZ ( i v xi + j v yj + k v zk ) 2(X+Y) 2m δtZ ( i v xi + j v yj ) perimeter MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaWgaa WcbaGaaGOmaiaadseaaeqaaOGaeyypa0ZaaSaaaeaacaaIYaGaamyB aaqaaiabes7aKjaadshacaWGAbaaamaalaaabaWaaeWaaeaadaaeqb qaaiaadAhadaWgaaWcbaGaamiEaiaadMgaaeqaaaqaaiaadMgaaeqa niabggHiLdGccqGHRaWkdaaeqbqaaiaadAhadaWgaaWcbaGaamyEai aadQgaaeqaaaqaaiaadQgaaeqaniabggHiLdGccqGHRaWkdaaeqbqa aiaadAhadaWgaaWcbaGaamOEaiaadUgaaeqaaaqaaiaadUgaaeqani abggHiLdaakiaawIcacaGLPaaaaeaacaaIYaGaaiikaiaadIfacqGH RaWkcaWGzbGaaiykaaaacqGHijYUdaWcaaqaaiaaikdacaWGTbaaba GaeqiTdqMaamiDaiaadQfaaaWaaSaaaeaadaqadaqaamaaqafabaGa amODamaaBaaaleaacaWG4bGaamyAaaqabaaabaGaamyAaaqab0Gaey yeIuoakiabgUcaRmaaqafabaGaamODamaaBaaaleaacaWG5bGaamOA aaqabaaabaGaamOAaaqab0GaeyyeIuoaaOGaayjkaiaawMcaaaqaai aadchacaWGLbGaamOCaiaadMgacaWGTbGaamyzaiaadshacaWGLbGa amOCaaaaaaa@7762@                (5)

where the definition of the perimeter, 2(X+Y), has been used and it should be remembered that the sum over vz will be much smaller than the sums over vx and vy

            Also, for a 2 dimensional gas we need to determine the analog of the volume that was used in equation.  Obviously, letting Z>> X,Y makes no difference in the volume:

V 2D =ZXY MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAfadaWgaa WcbaGaaGOmaiaadseaaeqaaOGaeyypa0JaamOwaiaadIfacaWGzbaa aa@3C21@ .

However, to show that the results in 2D are consistent with equation 1, we should look at the ratio of P2D to P from equation 1.  When this ratio is taken it cancels the Z dependence:

P 2DComputed P T 2m δtZ ( i v xi + j v yj ) perimeter NkT XYZ = 2m δt ( i v xi + j v yj ) perimeter NkT XY MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam iuamaaBaaaleaacaaIYaGaamiraiaadoeacaWGVbGaamyBaiaadcha caWG1bGaamiDaiaadwgacaWGKbaabeaaaOqaaiaadcfadaWgaaWcba GaamivaaqabaaaaOGaeyisIS7aaSaaaeaadaWcaaqaaiaaikdacaWG TbaabaGaeqiTdqMaamiDaiaadQfaaaWaaSaaaeaadaqadaqaamaaqa fabaGaamODamaaBaaaleaacaWG4bGaamyAaaqabaaabaGaamyAaaqa b0GaeyyeIuoakiabgUcaRmaaqafabaGaamODamaaBaaaleaacaWG5b GaamOAaaqabaaabaGaamOAaaqab0GaeyyeIuoaaOGaayjkaiaawMca aaqaaiaadchacaWGLbGaamOCaiaadMgacaWGTbGaamyzaiaadshaca WGLbGaamOCaaaaaeaadaWcaaqaaiaad6eacaWGRbGaamivaaqaaiaa dIfacaWGzbGaamOwaaaaaaGaeyypa0ZaaSaaaeaacaaIYaGaamyBaa qaaiabes7aKjaadshaaaWaaSaaaeaadaWcaaqaamaabmaabaWaaabu aeaacaWG2bWaaSbaaSqaaiaadIhacaWGPbaabeaaaeaacaWGPbaabe qdcqGHris5aOGaey4kaSYaaabuaeaacaWG2bWaaSbaaSqaaiaadMha caWGQbaabeaaaeaacaWGQbaabeqdcqGHris5aaGccaGLOaGaayzkaa aabaGaamiCaiaadwgacaWGYbGaamyAaiaad2gacaWGLbGaamiDaiaa dwgacaWGYbaaaaqaamaalaaabaGaamOtaiaadUgacaWGubaabaGaam iwaiaadMfaaaaaaaaa@866B@                   (6)

and therefore the new wall area for the 2D case becomes the perimeter, 2(X+Y), and the new volume in equation 1 becomes the area, XY.  The units for 2 dimensional pressure  are therefore force per unit length.

 

One Dimension

            We will assume that the motion is in the x direction and, similar to the 2D case, let Y and Z be very large compared to X so that the areas XZ and XY are much smaller than YZ.  Then the equations for the 2D case can be converted to following form:

 

P 1D 2m 2δtZY ( i v xi ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaWgaa WcbaGaaGymaiaadseaaeqaaOGaeyisIS7aaSaaaeaacaaIYaGaamyB aaqaaiaaikdacqaH0oazcaWG0bGaamOwaiaadMfaaaWaaeWaaeaada aeqbqaaiaadAhadaWgaaWcbaGaamiEaiaadMgaaeqaaaqaaiaadMga aeqaniabggHiLdaakiaawIcacaGLPaaaaaa@48AB@                                        (7)

The ratio of P1D to the P in equation 1 becomes:

P 1Dcomputed P T 2m 2δtZY ( i v xi ) NkT XYZ = 2m 2δt ( i v xi ) NkT X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam iuamaaBaaaleaacaaIXaGaamiraiaadogacaWGVbGaamyBaiaadcha caWG1bGaamiDaiaadwgacaWGKbaabeaaaOqaaiaadcfadaWgaaWcba GaamivaaqabaaaaOGaeyisIS7aaSaaaeaadaWcaaqaaiaaikdacaWG TbaabaGaaGOmaiabes7aKjaadshacaWGAbGaamywaaaadaqadaqaam aaqafabaGaamODamaaBaaaleaacaWG4bGaamyAaaqabaaabaGaamyA aaqab0GaeyyeIuoaaOGaayjkaiaawMcaaaqaamaalaaabaGaamOtai aadUgacaWGubaabaGaamiwaiaadMfacaWGAbaaaaaacqGH9aqpdaWc aaqaamaalaaabaGaaGOmaiaad2gaaeaacaaIYaGaeqiTdqMaamiDaa aadaqadaqaamaaqafabaGaamODamaaBaaaleaacaWG4bGaamyAaaqa baaabaGaamyAaaqab0GaeyyeIuoaaOGaayjkaiaawMcaaaqaamaala aabaGaamOtaiaadUgacaWGubaabaGaamiwaaaaaaaaaa@68E0@                  (8)

so that the new effective volume for equation 1 becomes X and the new effective area becomes unity.  The units for 1 dimensional pressure are therefore simply force. 

            But the force exerted by a particular atomic type on the end of the one dimensional domain depends on which type of atom happens to be closest to the particular end.  So, in order to reduce statistical fluctuations of the partial pressures, we must separate the domain into a number Ms of equal sub-domains and compute the force at the ends of each.  Since the average number of atoms in each sub-domain is reduced by the factor 1/Ms and the length of each sub-domain is also reduced by the factor 1/Ms, this division doesn't affect PT in equation 1. However, the total forces on all the ends that result from equation 7 must be reduced by the factor 1/Ms since there are Ms more ends being impacted.  Then equation 8 becomes:

 

P 1Dcomputed P T 2m 2δt ( i v xi ) M s NkT X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam iuamaaBaaaleaacaaIXaGaamiraiaadogacaWGVbGaamyBaiaadcha caWG1bGaamiDaiaadwgacaWGKbaabeaaaOqaaiaadcfadaWgaaWcba GaamivaaqabaaaaOGaeyisIS7aaSaaaeaadaWcaaqaaiaaikdacaWG TbaabaGaaGOmaiabes7aKjaadshaaaWaaeWaaeaadaaeqbqaaiaadA hadaWgaaWcbaGaamiEaiaadMgaaeqaaaqaaiaadMgaaeqaniabggHi LdaakiaawIcacaGLPaaaaeaacaWGnbWaaSbaaSqaaiaadohaaeqaaO WaaSaaaeaacaWGobGaam4AaiaadsfaaeaacaWGybaaaaaaaaa@5604@                                   (7a)

 

 

Appendix A: Derivation of Equation 1

            We want to be able to compare the numerically computed kinetic pressure results in the preceding section with the expected results from an analog of equation 1 which uses the average translational kinetic energy of the particles in place of a factor of kT, the thermal energy.  For that reason, here I derive the analogs of equation 1 in 3, 2, and 1 dimension.

a. Three Dimensions

            The time that elapses between a single atom's collisions on a single x=0 or x=X wall is

δt= 2X v x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaads hacqGH9aqpdaWcaaqaaiaaikdacaWGybaabaGaamODamaaBaaaleaa caWG4baabeaaaaaaaa@3D5C@                                                           

  The momentum imparted by a single collision of an atom with the x=X wall is

<δ p x >=2m< v x > MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgYda8iabes 7aKjaadchadaWgaaWcbaGaamiEaaqabaGccqGH+aGpcqGH9aqpcaaI YaGaamyBaiabgYda8iaadAhadaWgaaWcbaGaamiEaaqabaGccqGH+a Gpaaa@42B2@

and therefore the force due to a single atom imparted to the wall is

F x = <δ p x > δt = m< v x 2 > X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaamiEaaqabaGccqGH9aqpdaWcaaqaaiabgYda8iabes7aKjaa dchadaWgaaWcbaGaamiEaaqabaGccqGH+aGpaeaacqaH0oazcaWG0b aaaiabg2da9maalaaabaGaamyBaiabgYda8iaadAhadaqhaaWcbaGa amiEaaqaaiaaikdaaaGccqGH+aGpaeaacaWGybaaaaaa@4952@

However, since the energy is divided into 3 equal orthogonal (x,y,z) components we can now derive equation 1.  The total average energy of the atom is

E= m 2 (< v x 2 >+< v y 2 >+< v z 2 >)= 3 2 m< v x 2 > MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweacqGH9a qpdaWcaaqaaiaad2gaaeaacaaIYaaaaiaacIcacqGH8aapcaWG2bWa a0baaSqaaiaadIhaaeaacaaIYaaaaOGaeyOpa4Jaey4kaSIaeyipaW JaamODamaaDaaaleaacaWG5baabaGaaGOmaaaakiabg6da+iabgUca RiabgYda8iaadAhadaqhaaWcbaGaamOEaaqaaiaaikdaaaGccqGH+a GpcaGGPaGaeyypa0ZaaSaaaeaacaaIZaaabaGaaGOmaaaacaWGTbGa eyipaWJaamODamaaDaaaleaacaWG4baabaGaaGOmaaaakiabg6da+a aa@53F6@

so that Fx becomes:

F x = <δ p x > δt = 2E 3X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaamiEaaqabaGccqGH9aqpdaWcaaqaaiabgYda8iabes7aKjaa dchadaWgaaWcbaGaamiEaaqabaGccqGH+aGpaeaacqaH0oazcaWG0b aaaiabg2da9maalaaabaGaaGOmaiaadweaaeaacaaIZaGaamiwaaaa aaa@45AC@

and then the pressure on the x=X wall becomes

P X =N F x A X = 2NE 3XYZ = 2NE 3V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaWgaa WcbaGaamiwaaqabaGccqGH9aqpcaWGobWaaSaaaeaacaWGgbWaaSba aSqaaiaadIhaaeqaaaGcbaGaamyqamaaBaaaleaacaWGybaabeaaaa GccqGH9aqpdaWcaaqaaiaaikdacaWGobGaamyraaqaaiaaiodacaWG ybGaamywaiaadQfaaaGaeyypa0ZaaSaaaeaacaaIYaGaamOtaiaadw eaaeaacaaIZaGaamOvaaaaaaa@4960@

Boltzmann's law states that each degree of freedom (e.g. Ex) carries kT/2 thermal energy.

kT 2 = 1 2 m< v x 2 >= E x i.e. E= 3 2 kT MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaWaaSaaae aacaWGRbGaamivaaqaaiaaikdaaaGaeyypa0ZaaSaaaeaacaaIXaaa baGaaGOmaaaacaWGTbGaeyipaWJaamODamaaDaaaleaacaWG4baaba GaaGOmaaaakiabg6da+iabg2da9iaadweadaWgaaWcbaGaamiEaaqa baaakeaacaWGPbGaaiOlaiaadwgacaGGUaGaaGPaVdqaaiaadweacq GH9aqpdaWcaaqaaiaaiodaaeaacaaIYaaaaiaadUgacaWGubaaaaa@4DEA@

 

so that finally we can write PX in terms of the temperature and volume:

P X = NkT V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaWgaa WcbaGaamiwaaqabaGccqGH9aqpdaWcaaqaaiaad6eacaWGRbGaamiv aaqaaiaadAfaaaaaaa@3C60@

b. Two Dimensions

            In the 2D case, the main change from the 3D case is that now the energy of a single atom is:

            E= m 2 (< v x 2 >+< v y 2 >)= 2 2 m< v x 2 > MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweacqGH9a qpdaWcaaqaaiaad2gaaeaacaaIYaaaaiaacIcacqGH8aapcaWG2bWa a0baaSqaaiaadIhaaeaacaaIYaaaaOGaeyOpa4Jaey4kaSIaeyipaW JaamODamaaDaaaleaacaWG5baabaGaaGOmaaaakiabg6da+iaacMca cqGH9aqpdaWcaaqaaiaaikdaaeaacaaIYaaaaiaad2gacqGH8aapca WG2bWaa0baaSqaaiaadIhaaeaacaaIYaaaaOGaeyOpa4daaa@4E1A@

However, since there are only 2 degrees of freedom we have that:

E=kT MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweacqGH9a qpcaWGRbGaamivaaaa@3984@

 

and therefore the computed pressure is still the same:

P X = NkT XY = NkT A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaWgaa WcbaGaamiwaaqabaGccqGH9aqpdaWcaaqaaiaad6eacaWGRbGaamiv aaqaaiaadIfacaWGzbaaaiabg2da9maalaaabaGaamOtaiaadUgaca WGubaabaGaamyqaaaaaaa@41B8@

where A is the area of the 2D domain and becomes the effective volume.

c. One Dimension

            For the 1D case, there is a big difference because the only atoms that have access to the ends of the 1D domain are the 2 that are closest to the ends.  Since the average spacing of atoms is X/N, the single end collision time for one of these atoms is therefore reduced to

δt= 2X N v x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaads hacqGH9aqpdaWcaaqaaiaaikdacaWGybaabaGaamOtaiaadAhadaWg aaWcbaGaamiEaaqabaaaaaaa@3E2F@

The force that a single atom exerts on its adjacent wall is

F x = 2m v x δt = 2Nm v x 2 2X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaamiEaaqabaGccqGH9aqpdaWcaaqaaiaaikdacaWGTbGaamOD amaaBaaaleaacaWG4baabeaaaOqaaiabes7aKjaadshaaaGaeyypa0 ZaaSaaaeaacaaIYaGaamOtaiaad2gacaWG2bWaa0baaSqaaiaadIha aeaacaaIYaaaaaGcbaGaaGOmaiaadIfaaaaaaa@4794@

For one dimension, the pressure is equal to the force and kT=1/2(m<vx2>

P x = 2Nm v x 2 2X = 2NkT X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaWgaa WcbaGaamiEaaqabaGccqGH9aqpdaWcaaqaaiaaikdacaWGobGaamyB aiaadAhadaqhaaWcbaGaamiEaaqaaiaaikdaaaaakeaacaaIYaGaam iwaaaacqGH9aqpdaWcaaqaaiaaikdacaWGobGaam4Aaiaadsfaaeaa caWGybaaaaaa@4559@

which is really the same as equation 1 except for the factor 2 and the fact that now the effective volume is X.

 

 

 

Appendix B: Energy Distribution N(E)

            The program uses the results for velocity changes that are given in the next section to compute the kinetic energies of all of the atoms at each time increment.  These energies are used to compute a bin number, b

b= E E max n bins MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkgacqGH9a qpdaWcaaqaaiaadweaaeaacaWGfbWaaSbaaSqaaiGac2gacaGGHbGa aiiEaaqabaaaaOGaamOBamaaBaaaleaacaWGIbGaamyAaiaad6gaca WGZbaabeaaaaa@4165@

where Emax is several times larger than the average energy of all the atoms and nbins is the number of energy bins that we use.

When an atom has bin number b, an integer array component, iEb, is incremented by an the integer 1.  After all of the atoms have been polled, iE contains the distribution of number of atoms Vs atom energy, N(E).  But, since we use 80 bins and we are limited to only about 1200 atoms, that would result, if N(E) is constant, in an average bin population of 15.  The variance of 15 is about 4 and this would result in very erratic N(E).  What we really want to know is the relative average occupancy of the energy bins. To obtain the final relative occupancy of the bins, it is acceptable to keep incrementing iEb after each time interval.  If we do this for a very large number of time increments, the initial transient changes of N(E) will be "averaged out".  It is equivalent to taking many "snapshots" of the atomic energy distribution and averaging the results for each bin.  Then what is plotted as a histogram is

            i E b = 1 T t=1 T i E b,t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMgacaWGfb WaaSbaaSqaaiaadkgaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGa amivaaaadaaeWbqaaiaadMgacaWGfbWaaSbaaSqaaiaadkgacaGGSa GaamiDaaqabaaabaGaamiDaiabg2da9iaaigdaaeaacaWGubaaniab ggHiLdaaaa@45A8@  

where t is the snapshot number and T is much greater than one. 

            The animation makes separate histograms for red and blue atoms.  In addition, a least squares fit of an exponential function (the Boltzmann distribution) to the data in the histogram is made.  The relative occupancy number (RON) equation is:

N a (E)= N 0 exp( E <E> ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6eadaWgaa WcbaGaamyyaaqabaGccaGGOaGaamyraiaacMcacqGH9aqpcaWGobWa aSbaaSqaaiaaicdaaeqaaOGaciyzaiaacIhacaGGWbWaaeWaaeaacq GHsisldaWcaaqaaiaadweaaeaacqGH8aapcaWGfbGaeyOpa4daaaGa ayjkaiaawMcaaaaa@45C7@

where <E> is the average energy of the entire atom ensemble just as expected for a Boltzmann distribution.  The animation shows beyond doubt that the RON equation has the same form and constants for red and blue atoms regardless of their masses, numbers and initial energies.

Figure 1: Diagram of the animation after evolution was reasonably complete with an average energy <E>=3.0.  Note that the green and purple exponential plots are a good fit to the red and blue atom numbers per bin histogram with correlation coefficients of 1.0.  Also note that the exponential coefficients were very close to -1/3.0 as expected for a Boltzmann distribution.

Appendix C: Mathematics of Hard Sphere Scattering

Atom-Atom Collisions of Different Mass and Velocity

            Here we will consider spherical atoms which have the different masses, m1 and m2, and diameters, D1 and D2.  The centers of the spheres will be labeled (x1,y1,z1) and (x2,y2,z2).  Upon collision, the momentum transferred between the spheres will always be along the unit vector between their centers:

u= [ ( x 1 x 2 ) x ^ +( y 1 y 2 ) y ^ +( z 1 z 2 ) z ^ ] r 12 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahwhacqGH9a qpdaWcaaqaamaadmaabaGaaiikaiaadIhadaWgaaWcbaGaaGymaaqa baGccqGHsislcaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaiykaiqahI hagaqcaiabgUcaRiaacIcacaWG5bWaaSbaaSqaaiaaigdaaeqaaOGa eyOeI0IaamyEamaaBaaaleaacaaIYaaabeaakiaacMcaceWH5bGbaK aacqGHRaWkcaGGOaGaamOEamaaBaaaleaacaaIXaaabeaakiabgkHi TiaadQhadaWgaaWcbaGaaGOmaaqabaGccaGGPaGabCOEayaajaaaca GLBbGaayzxaaaabaGaamOCamaaBaaaleaacaaIXaGaaGOmaaqabaaa aaaa@53F4@                                                         (2)

where

r 12 = ( x 1 x 2 ) 2 + ( y 1 y 2 ) 2 + ( z 1 z 2 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhadaWgaa WcbaGaaGymaiaaikdaaeqaaOGaeyypa0ZaaOaaaeaacaGGOaGaamiE amaaBaaaleaacaaIXaaabeaakiabgkHiTiaadIhadaWgaaWcbaGaaG OmaaqabaGccaGGPaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaiik aiaadMhadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWG5bWaaSbaaS qaaiaaikdaaeqaaOGaaiykamaaCaaaleqabaGaaGOmaaaakiabgUca RiaacIcacaWG6bWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaamOEam aaBaaaleaacaaIYaaabeaakiaacMcadaahaaWcbeqaaiaaikdaaaaa beaaaaa@50A7@

is the distance between centers.  Since the animation is illustrated in only 2 dimensions, the collision analysis will assume a containing box that is large in the x and y dimensions but very thin in the z dimension. The following vector mathematics is correct for either 2 or three dimensions.

The expression for the final momenta in terms of the initial momenta is:

m 1 v 1 ' + m 2 v 2 ' = m 1 v 1 + m 2 v 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaWgaa WcbaGaaGymaaqabaGccaWH2bWaa0baaSqaaiaaigdaaeaacaGGNaaa aOGaey4kaSIaamyBamaaBaaaleaacaaIYaaabeaakiaahAhadaqhaa WcbaGaaGOmaaqaaiaacEcaaaGccqGH9aqpcaWGTbWaaSbaaSqaaiaa igdaaeqaaOGaaCODamaaDaaaleaacaaIXaaabaaaaOGaey4kaSIaam yBamaaBaaaleaacaaIYaaabeaakiaahAhadaqhaaWcbaGaaGOmaaqa aaaaaaa@4955@                                                                              (3)

where the apostrophe on the left side of the equations indicates the final velocities.  We know that the energies are conserved so

m 1 v 1 '2 + m 2 v 2 '2 2 = m 1 v 1 2 + m 1 v 2 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam yBamaaBaaaleaacaaIXaaabeaakiaadAhadaqhaaWcbaGaaGymaaqa aiaacEcacaaIYaaaaOGaey4kaSIaamyBamaaBaaaleaacaaIYaaabe aakiaadAhadaqhaaWcbaGaaGOmaaqaaiaacEcacaaIYaaaaaGcbaGa aGOmaaaacqGH9aqpdaWcaaqaaiaad2gadaWgaaWcbaGaaGymaaqaba GccaWG2bWaa0baaSqaaiaaigdaaeaacaaIYaaaaOGaey4kaSIaamyB amaaBaaaleaacaaIXaaabeaakiaadAhadaqhaaWcbaGaaGOmaaqaai aaikdaaaaakeaacaaIYaaaaaaa@4DD6@                                                                             (4)

The directions of the change in momenta are along the vector of centers, u, and the values of the changes of momenta must be equal and opposite.

m 1 Δ v 1 Mδvu= m 2 Δ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaWgaa WcbaGaaGymaaqabaGccaWHuoGaaCODamaaBaaaleaacaaIXaaabeaa kiabggMi6kaad2eacqaH0oazcaWG2bGaaCyDaiabg2da9iabgkHiTi aad2gadaWgaaWcbaGaaGOmaaqabaGccaWHuoGaaCODamaaBaaaleaa caaIYaaabeaaaaa@47F5@                                                                      (5)

where M has units of mass and is still to be determined.  Using equation 5 in equation 3:

m 1 v 1 ' = m 1 v 1 +Mδvu m 2 v 2 ' = m 2 v 2 Mδvu MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyBam aaBaaaleaacaaIXaaabeaakiaahAhadaqhaaWcbaGaaGymaaqaaiaa cEcaaaGccqGH9aqpcaWGTbWaaSbaaSqaaiaaigdaaeqaaOGaaCODam aaDaaaleaacaaIXaaabaaaaOGaey4kaSIaamytaiabes7aKjaadAha caWH1baabaGaamyBamaaBaaaleaacaaIYaaabeaakiaahAhadaqhaa WcbaGaaGOmaaqaaiaacEcaaaGccqGH9aqpcaWGTbWaaSbaaSqaaiaa ikdaaeqaaOGaaCODamaaDaaaleaacaaIYaaabaaaaOGaeyOeI0Iaam ytaiabes7aKjaadAhacaWH1baaaaa@5357@                                                                            (6)

Now we can use equation 6 in equation 4 to solve for the value of Mδv.

  ( m 1 v 1 +Mδvu)( m 1 v 1 +Mδvu) 2 m 1 + ( m 2 v 2 Mδvu)( m 2 v 2 Mδvu) 2 m 2 = m 1 v 1 2 + m 2 v 2 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaai ikaiaad2gadaWgaaWcbaGaaGymaaqabaGccaWH2bWaa0baaSqaaiaa igdaaeaaaaGccqGHRaWkcaWGnbGaeqiTdqMaamODaiaahwhacaGGPa GaeyOiGCRaaiikaiaad2gadaWgaaWcbaGaaGymaaqabaGccaWH2bWa a0baaSqaaiaaigdaaeaaaaGccqGHRaWkcaWGnbGaeqiTdqMaamODai aahwhacaGGPaaabaGaaGOmaiaad2gadaWgaaWcbaGaaGymaaqabaaa aOGaey4kaSYaaSaaaeaacaGGOaGaamyBamaaBaaaleaacaaIYaaabe aakiaahAhadaqhaaWcbaGaaGOmaaqaaaaakiabgkHiTiaad2eacqaH 0oazcaWG2bGaaCyDaiaacMcacqGHIaYTcaGGOaGaamyBamaaBaaale aacaaIYaaabeaakiaahAhadaqhaaWcbaGaaGOmaaqaaaaakiabgkHi Tiaad2eacqaH0oazcaWG2bGaaCyDaiaacMcaaeaacaaIYaGaamyBam aaBaaaleaacaaIYaaabeaaaaGccqGH9aqpdaWcaaqaaiaad2gadaWg aaWcbaGaaGymaaqabaGccaWG2bWaa0baaSqaaiaaigdaaeaacaaIYa aaaOGaey4kaSIaamyBamaaBaaaleaacaaIYaaabeaakiaadAhadaqh aaWcbaGaaGOmaaqaaiaaikdaaaaakeaacaaIYaaaaaaa@751A@  (7)

where the large dot stands for the dot product and equation 7 simplifies to:

(2 m 1 Mδvu v 1 + M 2 δ v 2 ) 2 m 1 + (2 m 2 Mδvu v 2 + M 2 δ v 2 ) 2 m 2 =0 M 2 δ v 2 ( 1 m 1 + 1 m 2 )+2δvM(u v 1 u v 2 )=0 Mδv= 2 m 1 m 2 u( v 2 v 1 ) m 1 + m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaWaaSaaae aacaGGOaGaaGOmaiaad2gadaWgaaWcbaGaaGymaaqabaGccaWGnbGa eqiTdqMaamODaiaahwhacqGHIaYTcaWH2bWaa0baaSqaaiaaigdaae aaaaGccqGHRaWkcaWGnbWaaWbaaSqabeaacaaIYaaaaOGaeqiTdqMa amODamaaCaaaleqabaGaaGOmaaaakiaacMcaaeaacaaIYaGaamyBam aaBaaaleaacaaIXaaabeaaaaGccqGHRaWkdaWcaaqaaiaacIcacqGH sislcaaIYaGaamyBamaaBaaaleaacaaIYaaabeaakiaad2eacqaH0o azcaWG2bGaaCyDaiabgkci3kaahAhadaqhaaWcbaGaaGOmaaqaaaaa kiabgUcaRiaad2eadaahaaWcbeqaaiaaikdaaaGccqaH0oazcaWG2b WaaWbaaSqabeaacaaIYaaaaOGaaiykaaqaaiaaikdacaWGTbWaaSba aSqaaiaaikdaaeqaaaaakiabg2da9iaaicdaaeaacaWGnbWaaWbaaS qabeaacaaIYaaaaOGaeqiTdqMaamODamaaCaaaleqabaGaaGOmaaaa kmaabmaabaWaaSaaaeaacaaIXaaabaGaamyBamaaBaaaleaacaaIXa aabeaaaaGccqGHRaWkdaWcaaqaaiaaigdaaeaacaWGTbWaaSbaaSqa aiaaikdaaeqaaaaaaOGaayjkaiaawMcaaiabgUcaRiaaikdacqaH0o azcaWG2bGaamytaiaacIcacaWH1bGaeyOiGCRaaCODamaaDaaaleaa caaIXaaabaaaaOGaeyOeI0IaaCyDaiabgkci3kaahAhadaqhaaWcba GaaGOmaaqaaaaakiaacMcacqGH9aqpcaaIWaaabaGaamytaiabes7a KjaadAhacqGH9aqpdaWcaaqaaiaaikdacaWGTbWaaSbaaSqaaiaaig daaeqaaOGaamyBamaaBaaaleaacaaIYaaabeaakiaahwhacqGHIaYT caGGOaGaaCODamaaDaaaleaacaaIYaaabaaaaOGaeyOeI0IaaCODam aaDaaaleaacaaIXaaabaaaaOGaaiykaaqaaiaad2gadaWgaaWcbaGa aGymaaqabaGccqGHRaWkcaWGTbWaaSbaaSqaaiaaikdaaeqaaaaaaa aa@9888@                            (8)

We can now make the identification:

M= 2 m 1 m 2 m 1 + m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eacqGH9a qpdaWcaaqaaiaaikdacaWGTbWaaSbaaSqaaiaaigdaaeqaaOGaamyB amaaBaaaleaacaaIYaaabeaaaOqaaiaad2gadaWgaaWcbaGaaGymaa qabaGccqGHRaWkcaWGTbWaaSbaaSqaaiaaikdaaeqaaaaaaaa@40F5@                                                                            (9)

where M is known as the "reduced mass".

Equations 6 and 8 are a complete solution for the final momenta. The final velocities are computed by dividing both sides of equations 6 by their respective masses:

  v 1 ' = v 1 + 2 m 2 m 1 + m 2 u( v 2 v 1 )u v 2 ' = v 2 2 m 1 m 1 + m 2 u( v 2 v 1 )u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaaCODam aaDaaaleaacaaIXaaabaGaai4jaaaakiabg2da9iaahAhadaqhaaWc baGaaGymaaqaaaaakiabgUcaRmaalaaabaGaaGOmaiaad2gadaWgaa WcbaGaaGOmaaqabaaakeaacaWGTbWaaSbaaSqaaiaaigdaaeqaaOGa ey4kaSIaamyBamaaBaaaleaacaaIYaaabeaaaaGccaWH1bGaeyOiGC RaaiikaiaahAhadaqhaaWcbaGaaGOmaaqaaaaakiabgkHiTiaahAha daqhaaWcbaGaaGymaaqaaaaakiaacMcacaWH1baabaGaaCODamaaDa aaleaacaaIYaaabaGaai4jaaaakiabg2da9iaahAhadaqhaaWcbaGa aGOmaaqaaaaakiabgkHiTmaalaaabaGaaGOmaiaad2gadaWgaaWcba GaaGymaaqabaaakeaacaWGTbWaaSbaaSqaaiaaigdaaeqaaOGaey4k aSIaamyBamaaBaaaleaacaaIYaaabeaaaaGccaWH1bGaeyOiGCRaai ikaiaahAhadaqhaaWcbaGaaGOmaaqaaaaakiabgkHiTiaahAhadaqh aaWcbaGaaGymaaqaaaaakiaacMcacaWH1baaaaa@64EE@                                            (10)

Suppose m2>m1.  Then we see that the magnitude of the speed added to molecule 1 will be larger than the magnitude of  the speed removed from molecule 2.  We can easily see from equation 7, even though the averages of the dot products are zero,  that, on average, the collision results in an increased kinetic energy for atom 1 and a decreased kinetic energy for molecule 2 because of the mass term in the denominators. 

Summary of Results for Average Energies After Collision

After a collision with initial energies E10 and E20 we obtain the following results:

E 1 = E 10 +Mδvu v 1 + (Mδv) 2 2 m 1 = E 10 +M[u( v 2 v 1 )](u v 1 )+ M 2 2 m 1 [u( v 2 v 1 )] 2 E 2 = E 20 Mδvu v 2 + (Mδv) 2 2 m 2 = E 20 M[u( v 2 v 1 )](u v 2 )+ M 2 2 m 2 [u( v 2 v 1 )] 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyram aaBaaaleaacaaIXaaabeaakiabg2da9iaadweadaWgaaWcbaGaaGym aiaaicdaaeqaaOGaey4kaSIaamytaiabes7aKjaadAhacaWH1bGaey OiGCRaaCODamaaDaaaleaacaaIXaaabaaaaOGaey4kaSYaaSaaaeaa caGGOaGaamytaiabes7aKjaadAhacaGGPaWaaWbaaSqabeaacaaIYa aaaaGcbaGaaGOmaiaad2gadaWgaaWcbaGaaGymaaqabaaaaOGaeyyp a0JaamyramaaBaaaleaacaaIXaGaaGimaaqabaGccqGHRaWkcaWGnb Gaai4waiaahwhacqGHIaYTcaGGOaGaaCODamaaDaaaleaacaaIYaaa baaaaOGaeyOeI0IaaCODamaaDaaaleaacaaIXaaabaaaaOGaaiykai aac2facaGGOaGaaCyDaiabgkci3kaahAhadaqhaaWcbaGaaGymaaqa aaaakiaacMcacqGHRaWkdaWcaaqaaiaad2eadaahaaWcbeqaaiaaik daaaaakeaacaaIYaGaamyBamaaBaaaleaacaaIXaaabeaaaaGccaGG BbGaaCyDaiabgkci3kaacIcacaWH2bWaa0baaSqaaiaaikdaaeaaaa GccqGHsislcaWH2bWaa0baaSqaaiaaigdaaeaaaaGccaGGPaGaaiyx amaaCaaaleqabaGaaGOmaaaaaOqaaiaadweadaWgaaWcbaGaaGOmaa qabaGccqGH9aqpcaWGfbWaaSbaaSqaaiaaikdacaaIWaaabeaakiab gkHiTiaad2eacqaH0oazcaWG2bGaaCyDaiabgkci3kaahAhadaqhaa WcbaGaaGOmaaqaaaaakiabgUcaRmaalaaabaGaaiikaiaad2eacqaH 0oazcaWG2bGaaiykamaaCaaaleqabaGaaGOmaaaaaOqaaiaaikdaca WGTbWaaSbaaSqaaiaaikdaaeqaaaaakiabg2da9iaadweadaWgaaWc baGaaGOmaiaaicdaaeqaaOGaeyOeI0IaamytaiaacUfacaWH1bGaey OiGCRaaiikaiaahAhadaqhaaWcbaGaaGOmaaqaaaaakiabgkHiTiaa hAhadaqhaaWcbaGaaGymaaqaaaaakiaacMcacaGGDbGaaiikaiaahw hacqGHIaYTcaWH2bWaa0baaSqaaiaaikdaaeaaaaGccaGGPaGaey4k aSYaaSaaaeaacaWGnbWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGOmai aad2gadaWgaaWcbaGaaGOmaaqabaaaaOGaai4waiaahwhacqGHIaYT caGGOaGaaCODamaaDaaaleaacaaIYaaabaaaaOGaeyOeI0IaaCODam aaDaaaleaacaaIXaaabaaaaOGaaiykaiaac2fadaahaaWcbeqaaiaa ikdaaaaaaaa@B0D9@  (11)

 

When the above result is averaged over all angles between u and vi that actually lead to a collision i.e. u.(v2-v1)<0 we obtain:

< E 1 >= E 10 M v 1 2 2 + M 2 4 m 1 ( v 2 2 + v 1 2 )= E 10 M( E 10 m 1 )+ M 2 2 m 1 ( E 10 m 1 + E 20 m 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgYda8iaadw eadaWgaaWcbaGaaGymaaqabaGccqGH+aGpcqGH9aqpcaWGfbWaaSba aSqaaiaaigdacaaIWaaabeaakiabgkHiTmaalaaabaGaamytaiaadA hadaqhaaWcbaGaaGymaaqaaiaaikdaaaaakeaacaaIYaaaaiabgUca RmaalaaabaGaamytamaaCaaaleqabaGaaGOmaaaaaOqaaiaaisdaca WGTbWaaSbaaSqaaiaaigdaaeqaaaaakiaacIcacaWG2bWaa0baaSqa aiaaikdaaeaacaaIYaaaaOGaey4kaSIaamODamaaDaaaleaacaaIXa aabaGaaGOmaaaakiaacMcacqGH9aqpcaWGfbWaaSbaaSqaaiaaigda caaIWaaabeaakiabgkHiTiaad2eadaqadaqaamaalaaabaGaamyram aaBaaaleaacaaIXaGaaGimaaqabaaakeaacaWGTbWaaSbaaSqaaiaa igdaaeqaaaaaaOGaayjkaiaawMcaaiabgUcaRmaalaaabaGaamytam aaCaaaleqabaGaaGOmaaaaaOqaaiaaikdacaWGTbWaaSbaaSqaaiaa igdaaeqaaaaakmaabmaabaWaaSaaaeaacaWGfbWaaSbaaSqaaiaaig dacaaIWaaabeaaaOqaaiaad2gadaWgaaWcbaGaaGymaaqabaaaaOGa ey4kaSYaaSaaaeaacaWGfbWaaSbaaSqaaiaaikdacaaIWaaabeaaaO qaaiaad2gadaWgaaWcbaGaaGOmaaqabaaaaaGccaGLOaGaayzkaaaa aa@6B05@                     (12)

< E 2 >= E 20 M v 2 2 2 + M 2 4 m 2 ( v 2 2 + v 1 2 )= E 20 M( E 20 m 2 )+ M 2 2 m 2 ( E 10 m 1 + E 20 m 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgYda8iaadw eadaWgaaWcbaGaaGOmaaqabaGccqGH+aGpcqGH9aqpcaWGfbWaaSba aSqaaiaaikdacaaIWaaabeaakiabgkHiTmaalaaabaGaamytaiaadA hadaqhaaWcbaGaaGOmaaqaaiaaikdaaaaakeaacaaIYaaaaiabgUca RmaalaaabaGaamytamaaCaaaleqabaGaaGOmaaaaaOqaaiaaisdaca WGTbWaaSbaaSqaaiaaikdaaeqaaaaakiaacIcacaWG2bWaa0baaSqa aiaaikdaaeaacaaIYaaaaOGaey4kaSIaamODamaaDaaaleaacaaIXa aabaGaaGOmaaaakiaacMcacqGH9aqpcaWGfbWaaSbaaSqaaiaaikda caaIWaaabeaakiabgkHiTiaad2eadaqadaqaamaalaaabaGaamyram aaBaaaleaacaaIYaGaaGimaaqabaaakeaacaWGTbWaaSbaaSqaaiaa ikdaaeqaaaaaaOGaayjkaiaawMcaaiabgUcaRmaalaaabaGaamytam aaCaaaleqabaGaaGOmaaaaaOqaaiaaikdacaWGTbWaaSbaaSqaaiaa ikdaaeqaaaaakmaabmaabaWaaSaaaeaacaWGfbWaaSbaaSqaaiaaig dacaaIWaaabeaaaOqaaiaad2gadaWgaaWcbaGaaGymaaqabaaaaOGa ey4kaSYaaSaaaeaacaWGfbWaaSbaaSqaaiaaikdacaaIWaaabeaaaO qaaiaad2gadaWgaaWcbaGaaGOmaaqabaaaaaGccaGLOaGaayzkaaaa aa@6B0D@                   (13)

 

 

 

Summary of Average Energy Results for m1=m2=m

 

When m1=m2=m so that M=m the results for average E, <E> , are easily seen from equations 12 and 13 to be:

< E 1 >= E 10 + E 20 2 =< E 2 > MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgYda8iaadw eadaWgaaWcbaGaaGymaaqabaGccqGH+aGpcqGH9aqpdaWcaaqaaiaa dweadaWgaaWcbaGaaGymaiaaicdaaeqaaOGaey4kaSIaamyramaaBa aaleaacaaIYaGaaGimaaqabaaakeaacaaIYaaaaiabg2da9iabgYda 8iaadweadaWgaaWcbaGaaGOmaaqabaGccqGH+aGpaaa@461F@                                                                                           (14)

With a little more difficulty the results for the variances of E, <ΔΕ>,  are given by the following equations:

<Δ E 1 >= E 10 + E 20 4 =<Δ E 2 >when E 10 = E 20 <Δ E 1 >= 2 E 10 + E 20 4 =<Δ E 2 >when E 10 =0or E 20 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeyipaW JaeuiLdqKaamyramaaBaaaleaacaaIXaaabeaakiabg6da+iabg2da 9maalaaabaGaamyramaaBaaaleaacaaIXaGaaGimaaqabaGccqGHRa WkcaWGfbWaaSbaaSqaaiaaikdacaaIWaaabeaaaOqaaiaaisdaaaGa eyypa0JaeyipaWJaeuiLdqKaamyramaaBaaaleaacaaIYaaabeaaki abg6da+iaaykW7caWG3bGaamiAaiaadwgacaWGUbGaaGPaVlaaykW7 caWGfbWaaSbaaSqaaiaaigdacaaIWaGaaGPaVdqabaGccqGH9aqpca WGfbWaaSbaaSqaaiaaikdacaaIWaaabeaaaOqaaiabgYda8iabfs5a ejaadweadaWgaaWcbaGaaGymaaqabaGccqGH+aGpcqGH9aqpdaGcaa qaaiaaikdaaSqabaGcdaWcaaqaaiaadweadaWgaaWcbaGaaGymaiaa icdaaeqaaOGaey4kaSIaamyramaaBaaaleaacaaIYaGaaGimaaqaba aakeaacaaI0aaaaiabg2da9iabgYda8iabfs5aejaadweadaWgaaWc baGaaGOmaaqabaGccqGH+aGpcaaMc8Uaam4DaiaadIgacaWGLbGaam OBaiaaykW7caaMc8UaamyramaaBaaaleaacaaIXaGaaGimaiaaykW7 aeqaaOGaeyypa0JaaGimaiaaykW7caaMc8Uaam4BaiaadkhacaaMc8 UaamyramaaBaaaleaacaaIYaGaaGimaaqabaGccqGH9aqpcaaIWaaa aaa@85A3@                                         (15)

Discussion of Scattering for Equal Mass Atoms.

So, what really happens when the masses are equal, is that the energies redistribute themselves into a gaussian-like pattern with the gaussian width greater when the energy differences are greater.  Of course, the minimum outcome for any energy is always zero, so the distribution tends to become biased toward its E=0 end. 

 

If we start with mono-energetic atoms, E0, so that Etotal=2E0, then the first variance will always be 0.250E0.  A fraction of these scattered atoms will have energy 2E0 and an exactly equal fraction will have zero energy.  The next scattering, when with atoms with energies E0, can result in energies from zero energy up to 3E0.  When the next scattering is between 2 atoms that have energy of 2E0 the final energy can be as large as 4E0 but that is a very unlikely event.  Of course, since neither is moving, atoms with zero energy don't scatter with other atoms of zero energy so these latter remain at zero energy.  In fact the number of scatterings per second depends on the energy of the atoms, so this makes  all the lower energy atoms less likely to scatter with similar low energy atoms.

We could write the following approximate differential equation for the rate of scattering of atoms

dN dt =nσ v r nσ 2 E 1 m 1 + 2 E 2 m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiaad6eaaeaacaWGKbGaamiDaaaacqGH9aqpcaWGUbGaeq4WdmNa amODamaaBaaaleaacaWGYbaabeaakiabg2Hi1kaad6gacqaHdpWCda GcaaqaamaalaaabaGaaGOmaiaadweadaWgaaWcbaGaaGymaaqabaaa keaacaWGTbWaaSbaaSqaaiaaigdaaeqaaaaakiabgUcaRmaalaaaba GaaGOmaiaadweadaWgaaWcbaGaaGOmaaqabaaakeaacaWGTbWaaSba aSqaaiaaikdaaeqaaaaaaeqaaaaa@4D71@

where n is the atom density, vr is some average relative speed, and σ is the collision cross section.  Thus the rate of change of energies via scattering depends on the sum of the velocities of the two atoms involved.  This is one of the mechanisms that I think would cancel out the usual tendency for the  atoms to form a symmetric gaussian distribution centered at the average energy.  The other mechanism is that, while any energy higher than the average energy is possible, the minimum energy is always zero so a lot of atoms tend to accumulate near the zero end of the number Vs energy distribution.

            We can also say that there are few high energy atoms because they scatter quite often so that they usually get their energies degraded by scattering with lower energy atoms and become "thermalized".