Quantum Field Collapse

 

In this animation, I'll use the electromagnetic (EM) wave associated with a photon and show how it might collapse in order to eject an electron from an atom.

There are two requirements: 1.  Enough EM energy has to be transferred to the atom's electron to equal the ionization energy.  2. The integrated force from the EM wave must equal the force needed to pry the electron away from the nucleus. 

This ionization can occur by a couple of means: 1. A long EM wave can "phase lock" with the oscillating electron.  On average, the wave is just as likely to decrease the kinetic energy of the electron as it is to increase its kinetic energy.

2. The second way is that the EM wave can be compressed to a very strong pulse so that its phase becomes unimportant.  Only this second way will be addressed here.

Pulse Parameters

The parameters needed for the pulse will be calculated and illustrated here.

The length of the pulse must be less than a single wavelength of the original EM wave.  From the energy-time uncertainty relation

δUδt> 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaadw facqaH0oazcaWG0bGaeyOpa4ZaaSaaaeaacqWIpecAaeaacaaIYaaa aaaa@3E05@  

(1.1)

where dU is energy uncertainty and dt is time uncertainty.

We can easily show that the pulse duration can be reduced to

δt= 2δU MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaads hacqGH9aqpdaWcaaqaaiabl+qiObqaaiaaikdacqaH0oazcaWGvbaa aaaa@3E03@  

(1.2)

where dU is now the ionization energy.  Since the total energy of the single photon wave is also the ionization energy, we know that δU=hf MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaadw facqGH9aqpcaWGObGaamOzaaaa@3B49@  and then dt becomes:

δt>= 2hf = 1 4πf MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqMaamiDaiabg6da+iabg2da9maalaaabaGaeS4dHGgabaGa aGOmaiaadIgacaWGMbaaaiabg2da9maalaaabaGaaGymaaqaaiaais dacqaHapaCcaWGMbaaaaaa@43BB@  

(1.3)

Then, since the photon moves at the speed of light, the spatial length of the pulse

 

δx>= c 4πf = λ 4π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaadI hacqGH+aGpcqGH9aqpdaWcaaqaaiaadogaaeaacaaI0aGaeqiWdaNa amOzaaaacqGH9aqpdaWcaaqaaiabeU7aSbqaaiaaisdacqaHapaCaa aaaa@443E@  

(1.4)

which is much shorter than the wavelength, as expected.

The other item needed for the animation is the amplitude of this short pulse.  Since the energy per unit volume of an EM wave field is

dU dV = ε 0 2 E 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiaadwfaaeaacaWGKbGaamOvaaaacqGH9aqpdaWcaaqaaiabew7a LnaaBaaaleaacaaIWaaabeaaaOqaaiaaikdaaaGaamyramaaCaaale qabaGaaGOmaaaaaaa@3F9E@  

(1.5)

 

the power per unit area is

dP dA = c ε 0 2 E 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiaadcfaaeaacaWGKbGaamyqaaaacqGH9aqpdaWcaaqaaiaadoga cqaH1oqzdaWgaaWcbaGaaGimaaqabaaakeaacaaIYaaaaiaadweada ahaaWcbeqaaiaaikdaaaaaaa@406C@  

(1.6)

The power of the original wave delivered to an atom of area A is then

P= cA ε 0 2 E 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfacqGH9a qpdaWcaaqaaiaadogacaWGbbGaeqyTdu2aaSbaaSqaaiaaicdaaeqa aaGcbaGaaGOmaaaacaWGfbWaaWbaaSqabeaacaaIYaaaaaaa@3E8A@  

(1.7)

The energy needed in time δt= 1 4πf MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGbbaaaaaaa aapeGaeqiTdqMaamiDaiabg2da9OWaaSaaaeaacaaIXaaabaGaaGin aiabec8aWjaadAgaaaaaaa@3E53@  is equal to dU.  So what is the new pulse's value of E?

δU=Pδt= cA ε 0 8πf E 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiTdqMaamyvaiabg2da9iaadcfacqaH0oazcaWG0bGaeyypa0Za aSaaaeaacaWGJbGaamyqaiabew7aLnaaBaaaleaacaaIWaaabeaaaO qaaiaaiIdacqaHapaCcaWGMbaaaiaadweadaahaaWcbeqaaiaaikda aaaaaa@477B@  

(1.8)

 

so that the amplitude of E in the pulse is:

E= 8πfδU cA ε 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweacqGH9a qpdaGcaaqaamaalaaabaGaaGioaiabec8aWjaadAgacqaH0oazcaWG vbaabaGaam4yaiaadgeacqaH1oqzdaWgaaWcbaGaaGimaaqabaaaaa qabaaaaa@41FF@  

(1.9)

 

For a typical atom

A= 10 19 m 2 δU= 10 19 J f= 10 14 Hz c=3* 10 8 ε 0 =8.9* 10 12 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyqai abg2da9iaaigdacaaIWaWaaWbaaSqabeaacqGHsislcaaIXaGaaGyo aaaakiaaykW7caWGTbWaaWbaaSqabeaacaaIYaaaaaGcbaGaeqiTdq Maamyvaiabg2da9iaaigdacaaIWaWaaWbaaSqabeaacqGHsislcaaI XaGaaGyoaaaakiaaykW7caaMc8UaamOsaaqaaiaadAgacqGH9aqpca aIXaGaaGimamaaCaaaleqabaGaaGymaiaaisdacaaMc8oaaOGaaGPa VlaadIeacaWG6baabaGaam4yaiabg2da9iaaiodacaGGQaGaaGymai aaicdadaahaaWcbeqaaiaaiIdaaaaakeaacqaH1oqzdaWgaaWcbaGa aGimaaqabaGccqGH9aqpcaaI4aGaaiOlaiaaiMdacaGGQaGaaGymai aaicdadaahaaWcbeqaaiabgkHiTiaaigdacaaIYaaaaaaaaa@6510@  

(1.10)

From this we arrive at a value of E for the pulse of:

E= 8π 10 14 10 19 3* 10 8 10 19 8.9* 10 12 =0.970* 10 9 V/m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweacqGH9a qpdaGcaaqaamaalaaabaGaaGioaiabec8aWjaaigdacaaIWaWaaWba aSqabeaacaaIXaGaaGinaaaakiaaigdacaaIWaWaaWbaaSqabeaacq GHsislcaaIXaGaaGyoaaaaaOqaaiaaiodacaGGQaGaaGymaiaaicda daahaaWcbeqaaiaaiIdaaaGccaaIXaGaaGimamaaCaaaleqabaGaey OeI0IaaGymaiaaiMdaaaGccaaI4aGaaiOlaiaaiMdacaGGQaGaaGym aiaaicdadaahaaWcbeqaaiabgkHiTiaaigdacaaIYaaaaaaaaeqaaO Gaeyypa0JaaGimaiaac6cacaaI5aGaaG4naiaaicdacaGGQaGaaGym aiaaicdadaahaaWcbeqaaiaaiMdaaaGccaaMc8UaaGPaVlaadAfaca GGVaGaamyBaaaa@5DDE@  

(1.11)

 

Let's compare this result with the electric field needed to pry a static electron away from a shielded nucleus (like the hydrogen nucleus) when its distance r= 1e19 π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOCaiabg2da9maakaaabaWaaSaaaeaacaaIXaGaamyzaiabgkHi TiaaigdacaaI5aaabaGaeqiWdahaaaWcbeaaaaa@3E00@  meters.  The equation is simply

E= e 4π ε 0 r 2 = 1.6* 10 19 4*8.9* 10 12 * 10 19 =44.9* 10 9 V/m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyraiabg2da9maalaaabaGaamyzaaqaaiaaisdacqaHapaCcqaH 1oqzdaWgaaWcbaGaaGimaaqabaGccaWGYbWaaWbaaSqabeaacaaIYa aaaaaakiabg2da9maalaaabaGaaGymaiaac6cacaaI2aGaaiOkaiaa igdacaaIWaWaaWbaaSqabeaacqGHsislcaaIXaGaaGyoaaaaaOqaai aaisdacaGGQaGaaGioaiaac6cacaaI5aGaaiOkaiaaigdacaaIWaWa aWbaaSqabeaacqGHsislcaaIXaGaaGOmaaaakiaacQcacaaIXaGaaG imamaaCaaaleqabaGaeyOeI0IaaGymaiaaiMdaaaaaaOGaeyypa0Ja aGinaiaaisdacaGGUaGaaGyoaiaacQcacaaIXaGaaGimamaaCaaale qabaGaaGyoaaaakiaaykW7caaMc8UaamOvaiaac+cacaWGTbaaaa@61A9@  

(1.12)