Ring Resonator Interferometer Dynamics

Introduction

Ring resonators operating in non-steady state mode can be useful.  This document will detail how ring resonators fields are built up and how they dissipate.

Math for Maximum Resonance

To keep this as simple as possible we will let only one mirror have non-zero transmission so that this mirror will be both the input and output mirror.  That mirror's amplitude reflectance as observed from outside the resonator will be labeled re and that from inside the resonator will be ri.  For our purposes we will assume that ri is a positive real number.  Optical physics then dictate that re will be -ri.  To get started let us assume that the total optical path around the resonator is an integer number, N, of wavelengths so that the phase delay of light around the resonator is 2πN MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaikdacqaHap aCcaWGobaaaa@3938@

For our purposes it will be adequate to measure time in units of L/c where L is the resonator path length and c is the speed of light.  For L=30 cm L/c is 1 nanosecond which is an experimentally convenient to measure time increment. 

Light that is being injected n units after the source has started up, will be coherently reinforced by the echoes of its preceding injections by the quantity:

F(n)= k=0 k=n1 r i k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeacaGGOa GaamOBaiaacMcacqGH9aqpdaaeWbqaaiaadkhadaWgaaWcbaGaamyA aaqabaGcdaahaaWcbeqaaiaadUgaaaaabaGaam4Aaiabg2da9iaaic daaeaacaWGRbGaeyypa0JaamOBaiabgkHiTiaaigdaa0GaeyyeIuoa aaa@46B8@  

(1.1)

It is well known that this is a geometric series and has the exact sum:

F(n)= 1 r i n 1 r i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeacaGGOa GaamOBaiaacMcacqGH9aqpdaWcaaqaaiaaigdacqGHsislcaWGYbWa aSbaaSqaaiaadMgaaeqaaOWaaWbaaSqabeaacaWGUbaaaaGcbaGaaG ymaiabgkHiTiaadkhadaWgaaWcbaGaamyAaaqabaaaaaaa@42BE@  

(1.2)

Now, if the source provides amplitude E0, the primitive input through the mirrors transmission coefficient will be

e 0 =t E 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwgadaWgaa WcbaGaaGimaaqabaGccqGH9aqpcaWG0bGaamyramaaBaaaleaacaaI Waaabeaaaaa@3B74@  

(1.3)

and, at any time n after the source has been started, this e0 will be enhanced to en by factor F(n):

e n =t E 0 F(n)=t E 0 1 r i n 1 r i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwgadaWgaa WcbaGaamOBaaqabaGccqGH9aqpcaWG0bGaamyramaaBaaaleaacaaI WaaabeaakiaadAeacaGGOaGaamOBaiaacMcacqGH9aqpcaWG0bGaam yramaaBaaaleaacaaIWaaabeaakmaalaaabaGaaGymaiabgkHiTiaa dkhadaWgaaWcbaGaamyAaaqabaGcdaahaaWcbeqaaiaad6gaaaaake aacaaIXaGaeyOeI0IaamOCamaaBaaaleaacaWGPbaabeaaaaaaaa@4B3D@  

(1.4)

Now we can express t as a function of ri:

t= 1 r i 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshacqGH9a qpdaGcaaqaaiaaigdacqGHsislcaWGYbWaa0baaSqaaiaadMgaaeaa caaIYaaaaaqabaaaaa@3C70@  

(1.5)

Since the resonator has no internal loss, it would be reasonable to expect that, during steady state operation, the sum of the transmitted intensity out of the input mirror and the reflected intensity from the input mirror will be just E0.  We will now show that to be true.  Note that

e ntransmitted = t 2 E 0 1 r i n 1 r i =(1 r i 2 ) E 0 1 r i n 1 r i = E 0 (1+ r i )(1 r i n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwgadaWgaa WcbaGaamOBaiaadshacaWGYbGaamyyaiaad6gacaWGZbGaamyBaiaa dMgacaWG0bGaamiDaiaadwgacaWGKbGaaGPaVdqabaGccqGH9aqpca WG0bWaaWbaaSqabeaacaaIYaaaaOGaamyramaaBaaaleaacaaIWaaa beaakmaalaaabaGaaGymaiabgkHiTiaadkhadaqhaaWcbaGaamyAaa qaaiaad6gaaaaakeaacaaIXaGaeyOeI0IaamOCamaaBaaaleaacaWG PbaabeaaaaGccqGH9aqpcaGGOaGaaGymaiabgkHiTiaadkhadaWgaa WcbaGaamyAaaqabaGcdaahaaWcbeqaaiaaikdaaaGccaGGPaGaamyr amaaBaaaleaacaaIWaaabeaakmaalaaabaGaaGymaiabgkHiTiaadk hadaqhaaWcbaGaamyAaaqaaiaad6gaaaaakeaacaaIXaGaeyOeI0Ia amOCamaaBaaaleaacaWGPbaabeaaaaGccqGH9aqpcaWGfbWaaSbaaS qaaiaaicdaaeqaaOGaaiikaiaaigdacqGHRaWkcaWGYbWaaSbaaSqa aiaadMgaaeqaaOGaaiykaiaacIcacaaIXaGaeyOeI0IaamOCamaaDa aaleaacaWGPbaabaGaamOBaaaakiaacMcaaaa@705F@  

(1.6)

However the reflected field is always:

e reflected = r e E 0 = r i E 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwgadaWgaa WcbaGaamOCaiaadwgacaWGMbGaamiBaiaadwgacaWGJbGaamiDaiaa dwgacaWGKbaabeaakiabg2da9iaadkhadaWgaaWcbaGaamyzaaqaba GccaWGfbWaaSbaaSqaaiaaicdaaeqaaOGaeyypa0JaeyOeI0IaamOC amaaBaaaleaacaWGPbaabeaakiaadweadaWgaaWcbaGaaGimaaqaba aaaa@49FB@  

(1.7)

Steady state means that n in equation (1.6) goes to infinity so that etransmitted becomes:

e sstransmitted = E 0 (1+ r i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwgadaWgaa WcbaGaam4CaiaadohacqGHsislcaWG0bGaamOCaiaadggacaWGUbGa am4Caiaad2gacaWGPbGaamiDaiaadshacaWGLbGaamizaiaaykW7ca aMc8oabeaakiabg2da9iaadweadaWgaaWcbaGaaGimaaqabaGccaGG OaGaaGymaiabgUcaRiaadkhadaWgaaWcbaGaamyAaaqabaGccaGGPa aaaa@4F35@  

(1.8)

Then, combining equations (1.7) and (1.8) we have

e sstransmitted + e reflected = E 0 (1+ r i ) E 0 r i = E 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwgadaWgaa WcbaGaam4CaiaadohacqGHsislcaWG0bGaamOCaiaadggacaWGUbGa am4Caiaad2gacaWGPbGaamiDaiaadshacaWGLbGaamizaaqabaGccq GHRaWkcaWGLbWaaSbaaSqaaiaadkhacaWGLbGaamOzaiaadYgacaWG LbGaam4yaiaadshacaWGLbGaamizaaqabaGccqGH9aqpcaWGfbWaaS baaSqaaiaaicdaaeqaaOGaaiikaiaaigdacqGHRaWkcaWGYbWaaSba aSqaaiaadMgaaeqaaOGaaiykaiabgkHiTiaadweadaWgaaWcbaGaaG imaaqabaGccaWGYbWaaSbaaSqaaiaadMgaaeqaaOGaeyypa0Jaamyr amaaBaaaleaacaaIWaaabeaaaaa@5DF4@  

(1.9)

as expected.

The output Vs time after the input has started is proportional will look like an exponential due to the 1-r^n term.  Below is a plot Vs n:

Figure 1.  Plots of the internal field and intensity as well as the resonator output Vs the integer n which represents time for an amplitude reflectance of 0.96.

The curve for e in Figure 1 looks like the exponential:

f(n)=[ 1exp( n n e ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgacaGGOa GaamOBaiaacMcacqGH9aqpdaWadaqaaiaaigdacqGHsislcaGGLbGa aiiEaiaacchadaqadaqaaiabgkHiTmaalaaabaGaamOBaaqaaiaad6 gadaWgaaWcbaGaamyzaaqabaaaaaGccaGLOaGaayzkaaaacaGLBbGa ayzxaaaaaa@4627@  

(1.10)

where nis a constant that defines the value of n when f(n)= 1-1/e.

Note that the term in the numerator of equation (1.4)

1 r n =1exp(nln(r)) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaigdacqGHsi slcaWGYbWaaWbaaSqabeaacaWGUbaaaOGaeyypa0JaaGymaiabgkHi TiGacwgacaGG4bGaaiiCaiaacIcacaWGUbGaciiBaiaac6gacaGGOa GaamOCaiaacMcacaGGPaaaaa@45BD@  

(1.11)

is an identity which can be confirmed by taking the logarithm of both sides of the equation:

nln(r)=ln(exp(nln(r)) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gaciGGSb GaaiOBaiaacIcacaWGYbGaaiykaiabg2da9iGacYgacaGGUbGaaiik aiGacwgacaGG4bGaaiiCaiaacIcacaWGUbGaciiBaiaac6gacaGGOa GaamOCaiaacMcacaGGPaaaaa@4803@  

(1.12)

so that

n e = 1 ln(r) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gadaWgaa WcbaGaamyzaaqabaGccqGH9aqpcqGHsisldaWcaaqaaiaaigdaaeaa ciGGSbGaaiOBaiaacIcacaWGYbGaaiykaaaaaaa@3EF0@  

(1.13)

Thus we can conveniently compute the values or rn by computing a natural logarithm and a single exponential.

Math when off Resonance

When the path length around the resonator is increased so that the total phase shift is

Δϕ=2πN+δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejabew 9aMjabg2da9iaaikdacqaHapaCcaWGobGaey4kaSIaeqiTdqgaaa@3FF2@  

(1.14)

then equation (1.1) becomes:

F o (n)= k=0 k=n1 r i k e ikδ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaam4BaaqabaGccaGGOaGaamOBaiaacMcacqGH9aqpdaaeWbqa aiaadkhadaWgaaWcbaGaamyAaaqabaGcdaahaaWcbeqaaiaadUgaaa aabaGaam4Aaiabg2da9iaaicdaaeaacaWGRbGaeyypa0JaamOBaiab gkHiTiaaigdaa0GaeyyeIuoakiaadwgadaahaaWcbeqaaiaadMgaca WGRbGaeqiTdqgaaaaa@4C86@  

(1.15)

and equation (1.2) becomes:

F o (n)= 1 r i n e inδ 1 r i e iδ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaam4BaaqabaGccaGGOaGaamOBaiaacMcacqGH9aqpdaWcaaqa aiaaigdacqGHsislcaWGYbWaaSbaaSqaaiaadMgaaeqaaOWaaWbaaS qabeaacaWGUbaaaOGaamyzamaaCaaaleqabaGaamyAaiaad6gacqaH 0oazaaaakeaacaaIXaGaeyOeI0IaamOCamaaBaaaleaacaWGPbaabe aakiaadwgadaahaaWcbeqaaiaadMgacqaH0oazaaaaaaaa@4C43@  

(1.16)

The numerator in equation (1.16) still goes to zero as n becomes very large.  But the denominator in equation (1.16) is quite different from the denominator in equation (1.2)

We can see how this effects the resulting en by multiplying by the complex conjugate:

 

F o (n)= 1 r i n e inδ [1 r i e iδ ] (1 r i e iδ )(1 r i e iδ ) = (1 r i n e inδ )(1 r i e iδ ) 12 r i cosδ+ r i 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaam4BaaqabaGccaGGOaGaamOBaiaacMcacqGH9aqpdaWcaaqa aiaaigdacqGHsislcaWGYbWaaSbaaSqaaiaadMgaaeqaaOWaaWbaaS qabeaacaWGUbaaaOGaamyzamaaCaaaleqabaGaamyAaiaad6gacqaH 0oazaaGccaGGBbGaaGymaiabgkHiTiaadkhadaWgaaWcbaGaamyAaa qabaGccaWGLbWaaWbaaSqabeaacqGHsislcaWGPbGaeqiTdqgaaOGa aiyxaaqaaiaacIcacaaIXaGaeyOeI0IaamOCamaaBaaaleaacaWGPb aabeaakiaadwgadaahaaWcbeqaaiaadMgacqaH0oazaaGccaGGPaGa aiikaiaaigdacqGHsislcaGGYbWaaSbaaSqaaiaadMgaaeqaaOGaai yzamaaCaaaleqabaGaeyOeI0IaamyAaiabes7aKbaakiaacMcaaaGa eyypa0ZaaSaaaeaacaGGOaGaaGymaiabgkHiTiaadkhadaWgaaWcba GaamyAaaqabaGcdaahaaWcbeqaaiaad6gaaaGccaWGLbWaaWbaaSqa beaacaWGPbGaamOBaiabes7aKbaakiaacMcacaGGOaGaaGymaiabgk HiTiaadkhadaWgaaWcbaGaamyAaaqabaGccaWGLbWaaWbaaSqabeaa cqGHsislcaWGPbGaeqiTdqgaaOGaaiykaaqaaiaaigdacqGHsislca aIYaGaamOCamaaBaaaleaacaWGPbaabeaakiGacogacaGGVbGaai4C aiabes7aKjabgUcaRiaadkhadaWgaaWcbaGaamyAaaqabaGcdaahaa Wcbeqaaiaaikdaaaaaaaaa@8422@  

(1.17)

                                                                                                                                               

When n goes to infinity, the minimum value of the Fo in equation (1.17) is 1/(1+r2) and the maximum value is 1/(1-r).

Figure 2:Real and Imaginary parts of the field amplitude (when fully charged) Vs phase offset expressed in radians.

Discharge of Amplitude and Intensity

To express the amplitude Vs n when discharging we first look at the expression for charging in equation (1.10)

f(n)=[ 1exp( n n e ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgacaGGOa GaamOBaiaacMcacqGH9aqpdaWadaqaaiaaigdacqGHsislcaGGLbGa aiiEaiaacchadaqadaqaaiabgkHiTmaalaaabaGaamOBaaqaaiaad6 gadaWgaaWcbaGaamyzaaqabaaaaaGccaGLOaGaayzkaaaacaGLBbGa ayzxaaaaaa@4627@  

(1.18)

Discharging the amplitude has the same time constant as charging and thus

f d (n)=exp( n n 0 n e ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaWgaa WcbaGaamizaaqabaGccaGGOaGaamOBaiaacMcacqGH9aqpciGGLbGa aiiEaiaacchadaqadaqaaiabgkHiTmaalaaabaGaamOBaiabgkHiTi aad6gadaWgaaWcbaGaaGimaaqabaaakeaacaWGUbWaaSbaaSqaaiaa dwgaaeqaaaaaaOGaayjkaiaawMcaaaaa@467E@  

(1.19)

where fd(n) is the field amplitude at pass n, n is still the total number of passes after turn-on of the input and n0 is the number passes at which the input was turned off.  Since fd is the field, the intensity, I, must be proportional to this quantity squared:

I d (n)=exp( 2 n n 0 n e ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMeadaWgaa WcbaGaamizaaqabaGccaGGOaGaamOBaiaacMcacqGH9aqpciGGLbGa aiiEaiaacchadaqadaqaaiabgkHiTiaaikdadaWcaaqaaiaad6gacq GHsislcaWGUbWaaSbaaSqaaiaaicdaaeqaaaGcbaGaamOBamaaBaaa leaacaWGLbaabeaaaaaakiaawIcacaGLPaaaaaa@471D@  

(1.20)

Recall from equation (1.13) that

n e = 1 ln(r) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gadaWgaa WcbaGaamyzaaqabaGccqGH9aqpcqGHsisldaWcaaqaaiaaigdaaeaa ciGGSbGaaiOBaiaacIcacaWGYbGaaiykaaaaaaa@3EF0@  

(1.21)

For this section let me generalize the definition of r to be the coefficient of the single pass amplitude return to its starting point.  Then r 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhadaahaa Wcbeqaaiaaikdaaaaaaa@37CC@  will be the coefficient of the single pass intensity return to its starting point.  These coefficients will then be reduced by mirror scattering losses, mirror absorption losses, and bulk absorption losses of any media between the mirrors.

Now let's relate ne to the intensity losses per pass which are expressed:

l I =1 r 2 =(1+r)(1r) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYgadaWgaa WcbaGaamysaaqabaGccqGH9aqpcaaIXaGaeyOeI0IaamOCamaaCaaa leqabaGaaGOmaaaakiabg2da9iaacIcacaaIXaGaey4kaSIaamOCai aacMcacaGGOaGaaGymaiabgkHiTiaackhacaGGPaaaaa@4562@  

(1.22)

Now we will specialize the intensity losses to the case where 1-r<<1 so that

l I 2(1r) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYgadaWgaa WcbaGaamysaaqabaGccqGHijYUcaaIYaGaaiikaiaaigdacqGHsisl caWGYbGaaiykaaaa@3E45@  

(1.23)

Solving this equation for r we have:

r1 l I 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhacqGHij YUcaaIXaGaeyOeI0YaaSaaaeaacaWGSbWaaSbaaSqaaiaadMeaaeqa aaGcbaGaaGOmaaaaaaa@3CFC@  

(1.24)

Thus we have

n e 1 ln(1 l I /2) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gadaWgaa WcbaGaamyzaaqabaGccqGHijYUcqGHsisldaWcaaqaaiaaigdaaeaa ciGGSbGaaiOBaiaacIcacaaIXaGaeyOeI0IaamiBamaaBaaaleaaca WGjbaabeaakiaac+cacaaIYaGaaiykaaaaaaa@43B0@  

(1.25)

Since lI<<1 it is a good approximation to say

ln( 1 l I 2 ) l I 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGacYgacaGGUb WaaeWaaeaacaaIXaGaeyOeI0YaaSaaaeaacaWGSbWaaSbaaSqaaiaa dMeaaeqaaaGcbaGaaGOmaaaaaiaawIcacaGLPaaacqGHijYUcqGHsi sldaWcaaqaaiaadYgadaWgaaWcbaGaamysaaqabaaakeaacaaIYaaa aaaa@4320@  

(1.26)

and therefore

n e 2 l I MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gadaWgaa WcbaGaamyzaaqabaGccqGHijYUdaWcaaqaaiaaikdaaeaacaWGSbWa aSbaaSqaaiaadMeaaeqaaaaaaaa@3C66@  

(1.27)

Then equation (1.20) becomes

 

I d (n)=exp( 2 n n 0 n e )=exp( 2 n n 0 2 l I )=exp( l I (n n 0 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMeadaWgaa WcbaGaamizaaqabaGccaGGOaGaamOBaiaacMcacqGH9aqpciGGLbGa aiiEaiaacchadaqadaqaaiabgkHiTiaaikdadaWcaaqaaiaad6gacq GHsislcaWGUbWaaSbaaSqaaiaaicdaaeqaaaGcbaGaamOBamaaBaaa leaacaWGLbaabeaaaaaakiaawIcacaGLPaaacqGH9aqpciGGLbGaai iEaiaacchadaqadaqaaiabgkHiTiaaikdadaWcaaqaaiaad6gacqGH sislcaWGUbWaaSbaaSqaaiaaicdaaeqaaaGcbaWaaSaaaeaacaaIYa aabaGaamiBamaaBaaaleaacaWGjbaabeaaaaaaaaGccaGLOaGaayzk aaGaeyypa0JaciyzaiaacIhacaGGWbWaaeWaaeaacqGHsislcaWGSb WaaSbaaSqaaiaadMeaaeqaaOGaaiikaiaad6gacqGHsislcaWGUbWa aSbaaSqaaiaaicdaaeqaaOGaaiykaaGaayjkaiaawMcaaaaa@622C@  

(1.28)

I wish to point out that equation (1.28) is correct and is in agreement with published results for "cavity ring-down spectroscopy".

Figure 3:Charge and discharge of a resonator's amplitude and intensity as a function of the number of passes since starting. 

 

Note in Figure 3 that the amplitude discharge is the complement of the amplitude charge.  Also note that this is not the case for the intensity discharge which is far faster than the intensity charge.  This latter asymmetry  is true of the energy of capacitors in series RC circuits as well.