Acceleration of a Mass by Gas Expansion

Calculations

            The equation for the speed, v, of the mass as a function of the volume parameter, h, is:

v 2 = 2 m ( U 0 U )= 2 U 0 m ( 1 h 0 h ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAhadaahaa WcbeqaaiaaikdaaaGccqGH9aqpdaWcaaqaaiaaikdaaeaacaWGTbaa amaabmaabaGaamyvamaaBaaaleaacaaIWaaabeaakiabgkHiTiaadw faaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiaaikdacaWGvbWaaSba aSqaaiaaicdaaeqaaaGcbaGaamyBaaaadaqadaqaaiaaigdacqGHsi sldaWcaaqaaiaadIgadaWgaaWcbaGaaGimaaqabaaakeaacaWGObaa aaGaayjkaiaawMcaaaaa@4A50@  

(1.1)

where m is the mass, U0 is the starting internal energy, h0, is the starting boundary of the gas, and h is the present boundary of the gas. Now we recognize that v=dh/dt so that equation (1.1) can be re-written:

dh dt = 2 U 0 m 1 h 0 h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiaadIgaaeaacaWGKbGaamiDaaaacqGH9aqpdaGcaaqaamaalaaa baGaaGOmaiaadwfadaWgaaWcbaGaaGimaaqabaaakeaacaWGTbaaaa WcbeaakmaakaaabaGaaGymaiabgkHiTmaalaaabaGaamiAamaaBaaa leaacaaIWaaabeaaaOqaaiaadIgaaaaaleqaaaaa@4303@  

(1.2)

Again we can re-write equation (1.2) by keeping all h terms on the left side of the equation:

dh 1 h 0 h = 2 U 0 m dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiaadIgaaeaadaGcaaqaaiaaigdacqGHsisldaWcaaqaaiaadIga daWgaaWcbaGaaGimaaqabaaakeaacaWGObaaaaWcbeaaaaGccqGH9a qpdaGcaaqaamaalaaabaGaaGOmaiaadwfadaWgaaWcbaGaaGimaaqa baaakeaacaWGTbaaaaWcbeaakiaadsgacaWG0baaaa@430D@  

(1.3)

Now we would like to integrate both sides of this equation.  To do this for the left side we first make the change of variable u=h0/h.  Then

du= h 0 dh h 2 dh= h 2 h 0 du= h 0 u 2 du MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamizai aadwhacqGH9aqpcqGHsisldaWcaaqaaiaadIgadaWgaaWcbaGaaGim aaqabaGccaWGKbGaamiAaaqaaiaadIgadaahaaWcbeqaaiaaikdaaa aaaaGcbaGaamizaiaadIgacqGH9aqpcqGHsisldaWcaaqaaiaadIga daahaaWcbeqaaiaaikdaaaaakeaacaWGObWaaSbaaSqaaiaaicdaae qaaaaakiaadsgacaWG1bGaeyypa0JaeyOeI0YaaSaaaeaacaWGObWa aSbaaSqaaiaaicdaaeqaaaGcbaGaamyDamaaCaaaleqabaGaaGOmaa aaaaGccaWGKbGaamyDaaaaaa@5094@  

(1.4)

Converting the left hand side of equation (1.3) to be variable in u we have:

h 0 du u 2 1u = 2 U 0 m dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiaadI gadaWgaaWcbaGaaGimaaqabaGcdaWcaaqaaiaadsgacaWG1baabaGa amyDamaaCaaaleqabaGaaGOmaaaakmaakaaabaGaaGymaiabgkHiTi aadwhaaSqabaaaaOGaeyypa0ZaaOaaaeaadaWcaaqaaiaaikdacaWG vbWaaSbaaSqaaiaaicdaaeqaaaGcbaGaamyBaaaaaSqabaGccaWGKb GaamiDaaaa@45F1@  

(1.5)

The integration of the right side of equation (1.5) is trivial and the integral of the left side can be found in tables:

du u 2 1u = 1u +u tanh 1 1u u = 1 h 0 2 U 0 m t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaapeaabaWaaS aaaeaacaWGKbGaamyDaaqaaiaadwhadaahaaWcbeqaaiaaikdaaaGc daGcaaqaaiaaigdacqGHsislcaWG1baaleqaaaaakiabg2da9maala aabaWaaOaaaeaacaaIXaGaeyOeI0IaamyDaaWcbeaakiabgUcaRiaa dwhaciGG0bGaaiyyaiaac6gacaGGObWaaWbaaSqabeaacqGHsislca aIXaaaaOWaaOaaaeaacaaIXaGaeyOeI0IaamyDaaWcbeaaaOqaaiaa dwhaaaGaeyypa0JaeyOeI0YaaSaaaeaacaaIXaaabaGaamiAamaaBa aaleaacaaIWaaabeaaaaGcdaGcaaqaamaalaaabaGaaGOmaiaadwfa daWgaaWcbaGaaGimaaqabaaakeaacaWGTbaaaaWcbeaaaeqabeqdcq GHRiI8aOGaamiDaaaa@56D9@  

(1.6)

The u integral in equation (1.6) has upper limit u=1 and lower limit u=h0/h where h>h0.  At its upper limit the result is zero.  Equation 6 can be solved for the time, t, as a function of u:

t= h 0 m 2 U 0 1u +u tanh 1 1u u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshacqGH9a qpcaWGObWaaSbaaSqaaiaaicdaaeqaaOWaaOaaaeaadaWcaaqaaiaa d2gaaeaacaaIYaGaamyvamaaBaaaleaacaaIWaaabeaaaaaabeaakm aalaaabaWaaOaaaeaacaaIXaGaeyOeI0IaamyDaaWcbeaakiabgUca RiaadwhaciGG0bGaaiyyaiaac6gacaGGObWaaWbaaSqabeaacqGHsi slcaaIXaaaaOWaaOaaaeaacaaIXaGaeyOeI0IaamyDaaWcbeaaaOqa aiaadwhaaaaaaa@4B6F@  

(1.7)

If we change h in uniform increments and compute the change of time at these values of h, we can obtain dh/dt which is the speed of the mass.  To start let's re-write equation (1.7) in terms of h:

t(h)= h 0 m 2 U 0 1 h 0 h + h 0 h tanh 1 1 h 0 h h 0 h h 0 f(h) v max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshacaGGOa GaamiAaiaacMcacqGH9aqpcaWGObWaaSbaaSqaaiaaicdaaeqaaOWa aOaaaeaadaWcaaqaaiaad2gaaeaacaaIYaGaamyvamaaBaaaleaaca aIWaaabeaaaaaabeaakmaalaaabaWaaOaaaeaacaaIXaGaeyOeI0Ya aSaaaeaacaWGObWaaSbaaSqaaiaaicdaaeqaaaGcbaGaamiAaaaaaS qabaGccqGHRaWkdaWcaaqaaiaadIgadaWgaaWcbaGaaGimaaqabaaa keaacaWGObaaaiGacshacaGGHbGaaiOBaiaacIgadaahaaWcbeqaai abgkHiTiaaigdaaaGcdaGcaaqaaiaaigdacqGHsisldaWcaaqaaiaa dIgadaWgaaWcbaGaaGimaaqabaaakeaacaWGObaaaaWcbeaaaOqaam aalaaabaGaamiAamaaBaaaleaacaaIWaaabeaaaOqaaiaadIgaaaaa aiabggMi6kaadIgadaWgaaWcbaGaaGimaaqabaGcdaWcaaqaaiaadA gacaGGOaGaamiAaiaacMcaaeaacaWG2bWaaSbaaSqaaiGac2gacaGG HbGaaiiEaaqabaaaaaaa@6017@  

(1.8)

where I have defined vmax as the square root of 2U0/m which is the maximum speed that can be achieved.  Then speed is defined as:

dh dt = v max h 0 h i+1 h i f( h i+1 )f( h i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiaadIgaaeaacaWGKbGaamiDaaaacqGH9aqpdaWcaaqaaiaadAha daWgaaWcbaGaciyBaiaacggacaGG4baabeaaaOqaaiaadIgadaWgaa WcbaGaaGimaaqabaaaaOWaaSaaaeaacaWGObWaaSbaaSqaaiaadMga cqGHRaWkcaaIXaaabeaakiabgkHiTiaadIgadaWgaaWcbaGaamyAaa qabaaakeaacaWGMbGaciikaiaadIgadaWgaaWcbaGaamyAaiabgUca RiaaigdaaeqaaOGaaiykaiabgkHiTiaadAgacaGGOaGaamiAamaaBa aaleaacaWGPbaabeaakiaacMcaaaaaaa@529D@  

(1.9)

 

Figure

time

 

Plot of the mass speed V (red and purple) and position H (black and blue) versus time.  The results are by numerical integration and calculus integration, respectively.