Cylinder on an Inclined Plane

Introduction

            The acceleration of a cylinder that rolls on an inclined plane is generally considerably less than that of a similar mass that slides without friction on the same plane.  The reason for this difference is that rolling mass has more inertia than the sliding mass due to the need to accelerate both its rolling speed and its center of mass motion.  This animation will allow the viewer to see the variation of the acceleration due to changing the mass distribution of the cylinder.

 

Figures

Figure 1. Cylinder rolling on a plane inclined at angle θ from the horizontal.  Inner and outer radius are labeled.

Physics of Rolling Cylinder

            The cylinder is accelerated angularly by application of a force, F, at the point of contact on the plane.  The force results in a torque, T, about the center of mass of the cylinder.  The torque is defined as:

T=r×F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahsfacaWH9a GaaCOCaiaahEnacaWHgbaaaa@3AB8@  

(1.1)

where r is the radius of the cylinder and the x symbol denotes cross product. 

 

Since the mass rolls without slipping, its center of mass moves at speed

v=ωr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAhacqGH9a qpcqaHjpWDcaWGYbaaaa@3AB0@  

(1.2)

where ω is the angular rate of rotation (radians sec-1).

The cylinder center of mass (its axis) is accelerated at the rate:

dv dt = ω ˙ r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiaadAhaaeaacaWGKbGaamiDaaaacqGH9aqpcuaHjpWDgaGaaiaa dkhaaaa@3D94@  

(1.3)

where the dot over the ω denotes time derivative.

Even if there were no center of mass motion, all of the masses in the cylinder also have to be accelerated and rotate at ω.  The inertia (i.e. resistance to rotation) of these depend on their radial location.  The relation between rotational acceleration and applied torque obeys the following equation:

I ω ˙ =| r×F | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMeacuaHjp WDgaGaaiabg2da9maaemaabaGaaCOCaiaahEnacaWHgbaacaGLhWUa ayjcSdaaaa@3FE1@  

(1.4)

where the angular moment of inertial, I, is defined as (see Appendix below):

I= R I R O r 2 dm(r) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMeacqGH9a qpdaWdXaqaaiaadkhadaahaaWcbeqaaiaaikdaaaGccaWGKbGaamyB aiaacIcacaWGYbGaaiykaaWcbaGaamOuamaaBaaameaacaWGjbaabe aaaSqaaiaadkfadaWgaaadbaGaam4taaqabaaaniabgUIiYdaaaa@43B2@  

(1.5)

where RI, RO are the inner and outer radius and dm(r) is the incremental mass at radius r. For a cylinder dm(r) is defined as

dm(r)=2πLρrdr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgacaWGTb GaaiikaiaadkhacaGGPaGaeyypa0JaaGOmaiabec8aWjaadYeacqaH bpGCcaWGYbGaamizaiaadkhaaaa@42FD@  

(1.6)

where ρ is the mass per unit volume and L is the axial length of the cylinder. 

Inserting equation (1.6) into equation (1.5) and integrating over r we obtain:

I= 2π 4 ρL( R O 4 R I 4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMeacqGH9a qpdaWcaaqaaiaaikdacqaHapaCaeaacaaI0aaaaiabeg8aYjaadYea caGGOaGaamOuamaaDaaaleaacaWGpbaabaGaaGinaaaakiabgkHiTi aadkfadaqhaaWcbaGaamysaaqaaiaaisdaaaGccaGGPaaaaa@4517@  

(1.7)

By performing a similar integral we obtain the total mass of the cylinder:

M= R I R O dm(r)=2πLρ R I R O rdr = 2π 2 Lρ( R O 2 R I 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eacqGH9a qpdaWdXaqaaiaadsgacaWGTbGaaiikaiaadkhacaGGPaGaeyypa0Ja aGOmaiabec8aWjaacYeacqaHbpGCaSqaaiaadkfadaWgaaadbaGaam ysaaqabaaaleaacaWGsbWaaSbaaWqaaiaad+eaaeqaaaqdcqGHRiI8 aOWaa8qmaeaacaWGYbGaamizaiaadkhaaSqaaiaadkfadaWgaaadba GaamysaaqabaaaleaacaWGsbWaaSbaaWqaaiaad+eaaeqaaaqdcqGH RiI8aOGaeyypa0ZaaSaaaeaacaaIYaGaeqiWdahabaGaaGOmaaaaca GGmbGaeqyWdiNaaiikaiaadkfadaqhaaWcbaGaam4taaqaaiaaikda aaGccqGHsislcaWGsbWaa0baaSqaaiaadMeaaeaacaaIYaaaaOGaai ykaaaa@5EFB@  

(1.8)

Dividing equation (1.7) by equation (1.8) we obtain the simplified result:

I= M 2 ( R O 2 + R I 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMeacqGH9a qpdaWcaaqaaiaad2eaaeaacaaIYaaaaiaacIcacaWGsbWaa0baaSqa aiaad+eaaeaacaaIYaaaaOGaey4kaSIaamOuamaaDaaaleaacaWGjb aabaGaaGOmaaaakiaacMcaaaa@40CE@  

(1.9)

It should be noted that equation (1.9) is valid only for cases where the density, ρ, remains constant between RI and RO.  Note that I can vary from MRO2/2 (solid cylinder) to MRO2 (hoop) as rI varies from 0 to rO.

 

In addition to the angular inertia, we have to include the inertia associated with the center of mass's motion.  That component is

I CM =M r O 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMeadaWgaa WcbaGaam4qaiaad2eaaeqaaOGaeyypa0JaamytaiaadkhadaqhaaWc baGaam4taaqaaiaaikdaaaaaaa@3D15@  

(1.10)

Then the total inertial moment is:

I total = M 2 ( 3 r O 2 + r I 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMeadaWgaa WcbaGaamiDaiaad+gacaWG0bGaamyyaiaadYgaaeqaaOGaeyypa0Za aSaaaeaacaWGnbaabaGaaGOmaaaadaqadaqaaiaaiodacaWGYbWaa0 baaSqaaiaad+eaaeaacaaIYaaaaOGaey4kaSIaamOCamaaDaaaleaa caWGjbaabaGaaGOmaaaaaOGaayjkaiaawMcaaaaa@46EE@  

(1.11)

Note that Itotal can vary from 3MRO2/2 (solid cylinder) to 2MRO2 (hoop) as rI varies from 0 to rO.

We should also compute the torque available due to an inclined plane.  If the plane's angle with the horizontal is θ then the torque is

T=Mg r O sinθ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfacqGH9a qpcaWGnbGaam4zaiaadkhadaWgaaWcbaGaam4taaqabaGcciGGZbGa aiyAaiaac6gacqaH4oqCaaa@4017@  

(1.12)

where g is the acceleration of gravity.   

Then the angular acceleration is

ω ˙ = Mg r O sinθ I total = 2g r O sinθ ( 3 r O 2 + r I 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeM8a3zaaca Gaeyypa0ZaaSaaaeaacaWGnbGaam4zaiaadkhadaWgaaWcbaGaam4t aaqabaGcciGGZbGaaiyAaiaac6gacqaH4oqCaeaacaWGjbWaaSbaaS qaaiaadshacaWGVbGaamiDaiaadggacaWGSbaabeaaaaGccqGH9aqp daWcaaqaaiaaikdacaWGNbGaamOCamaaBaaaleaacaWGpbaabeaaki GacohacaGGPbGaaiOBaiabeI7aXbqaamaabmaabaGaaG4maiaadkha daqhaaWcbaGaam4taaqaaiaaikdaaaGccqGHRaWkcaWGYbWaa0baaS qaaiaadMeaaeaacaaIYaaaaaGccaGLOaGaayzkaaaaaaaa@58D0@  

(1.13)

            On many machines, the rolling mass is connected to a much larger non-rolling mass.  An example would be the wheel on a bicycle.  One might consider the question of the effect on acceleration of adding/removing mass to/from the rolling part as compared to a similar effect on the non-rolling part.  Looking at equation (1.11), if the mass is added or removed near rO of the roller so that rI is approximately equal to rO , then its effect on inertia is twice as much as if the mass is added or removed from the non-rolling part i.e.:

δ I total δM 1 2 ( 3 r O 2 + r I 2 )2 r O 2 rolling δ I nonrolling δM r O 2 nonrolling MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaWaaSaaae aacqaH0oazcaWGjbWaaSbaaSqaaiaadshacaWGVbGaamiDaiaadgga caWGSbaabeaaaOqaaiabes7aKjaad2eaaaGaeyisIS7aaSaaaeaaca aIXaaabaGaaGOmaaaadaqadaqaaiaaiodacaWGYbWaa0baaSqaaiaa d+eaaeaacaaIYaaaaOGaey4kaSIaamOCamaaDaaaleaacaWGjbaaba GaaGOmaaaaaOGaayjkaiaawMcaaiabgIKi7kaaikdacaWGYbWaa0ba aSqaaiaad+eaaeaacaaIYaaaaOGaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaamOCaiaad+gacaWGSbGaamiBaiaadMgacaWGUbGaam4zaaqa amaalaaabaGaeqiTdqMaamysamaaBaaaleaacaWGUbGaam4Baiaad6 gacqGHsislcaWGYbGaam4BaiaadYgacaWGSbGaamyAaiaad6gacaWG NbaabeaaaOqaaiabes7aKjaad2eaaaGaeyisISRaamOCamaaDaaale aacaWGpbaabaGaaGOmaaaakiaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa Vlaad6gacaWGVbGaamOBaiabgkHiTiaadkhacaWGVbGaamiBaiaadY gacaWGPbGaamOBaiaadEgacaaMc8oaaaa@B834@  

(1.14)

 

Appendix: Torque required to accelerate the angular rate of a mass at radius r

            It is well understand that the force required to linearly accelerate a mass follows Newton's law of motion:

m dv dt =F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaWcaa qaaiaadsgacaWG2baabaGaamizaiaadshaaaGaeyypa0JaamOraaaa @3C84@  

(1.15)

The force required to change the angular rate of a mass at radius r is then:

mr dω dt =F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gacaWGYb WaaSaaaeaacaWGKbGaeqyYdChabaGaamizaiaadshaaaGaeyypa0Ja amOraaaa@3E4D@  

(1.16)

Since we want to have the torque corresponding to this force we multiply both sides of the equation by the radius, r.

m r 2 dω dt =rF=T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gacaWGYb WaaWbaaSqabeaacaaIYaaaaOWaaSaaaeaacaWGKbGaeqyYdChabaGa amizaiaadshaaaGaeyypa0JaamOCaiaadAeacqGH9aqpcaWGubaaaa@4216@  

(1.17)

Equation (1.17) can be thought of as the reaction torque that resists applied torques of the opposite sense.