Non-Rigid Rotor Stabilized by a Potential
Rotor stabilized by Lennard-Jones type potential

Rather than making the spacing between the disks rigid, we can use a potential to keep the rotor disks together.  For this we will use a modified Lennard Jones potential..

The normal LJ potential is given by
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where the minimum potential is - and  is usually chosen as a nominal separation between disks.
We will change this expression by assigning variables to the power of he /r ratios.
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The value of r at the minimum potential is computed by setting the derivative of V(r) equal to zero and is
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This is also r where the force between particles goes to zero. We can use totally similar math to compute the spacing where maximum attractive force occurs.  First defining a power ratio, Pr, using the second derivative of the potential we have:
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we find that the spacing where maximum attractive force occurs is:
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and this leads to the value of the maximum attractive force:
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Using Fmax we can compute the maximum rotational speed that the diatomic molecule can have, and remain bound, for a given value of 



[image: image8.wmf]2

max

max

2

F

v

mF

r

<=

 
 MACROBUTTON MTPlaceRef \* MERGEFORMAT (0.7)

or
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where m is the mass of a single atom.

We can choose an initial separation for the atoms such that their separation stays constant by solving for r0 in the following equation:
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Equation (0.9)

 can always be solved by a Newton-Raphson numerical method or it can be solved algebraically for the special case a=2b:

If we let 
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 then we can rewrite equation (0.9)
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and equation (0.10)

 is recognized as a simple quadratic equation.  The solution for u is
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Again, for the special case a=2b we can write a better expression for vmax
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When the rotor is hit by another particle, it could easily be unbound unless the value of for the rotor binding is much larger than the value for the other particle.  It seems prudent to choose the interaction potential for this kind of collision to be:
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where A is the value of  for the atom and R is the value for the rotor.  This should tend to maintain the binding of the rotor components.  
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