Non-Rigid Rotor Stabilized by a Potential
Rotor stabilized by Lennard-Jones type potential

Rather than making the spacing between the disks rigid, we can use a potential to keep the rotor disks together.  For this we will use a modified Lennard Jones potential..

The normal LJ potential is given by
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where the minimum potential is - and  is usually chosen as a nominal separation between disks.
We will change this expression by assigning variables to the power of he /r ratios.
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The value of r at the minimum potential is computed by setting the derivative of V(r) equal to zero and is
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This is also r where the force between particles goes to zero. We can use totally similar math to compute the spacing where maximum attractive force occurs.  First defining a power ratio, Pr, using the second derivative of the potential we have:
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we find that the spacing where maximum attractive force occurs is:
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and this leads to the value of the maximum attractive force:
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Using Fmax we can compute the maximum rotational speed that the diatomic molecule can have, and remain bound, for a given value of 
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or
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where m is the mass of a single atom.

We can choose an initial separation for the atoms such that their separation stays constant by solving for r0 in the following equation:
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Equation (0.9)

 can always be solved by a Newton-Raphson numerical method or it can be solved algebraically for the special case a=2b:

If we let 
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 then we can rewrite equation (0.9)
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and equation (0.10)

 is recognized as a simple quadratic equation.  The solution for u is
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Again, for the special case a=2b we can write a better expression for vmax
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When the rotor is hit by another particle, it could easily be unbound unless the value of for the rotor binding is much larger than the value for the other particle.  It seems prudent to choose the interaction potential for this kind of collision to be:
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where A is the value of  for the atom and R is the value for the rotor.  This should tend to maintain the binding of the rotor components.  
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