Energy Distribution in 3D Including Rotors and Atoms

Introduction

            We've already animated the energy and motion of two dimensional (2D) rotors (i.e. rotors with discs at the ends) and 2D atoms and shown that the energy distribution of the 2D rotors agrees with that of just 3D atoms alone.  In the present animation, we allow the rotor to have 2 more degrees of freedom- linear motion in the z direction and rotation about both the two axes (call them yaw and roll) perpendicular to the line between the end spheres.  The rotation about this line is not important since

a. For central forces, collisions do not induce rotation about the line.

b. The moment of inertia of the rotor about the line is much smaller than the yaw and roll moments of inertia.

 

For the 3D rotors, this results in a total of 5 degrees of freedom and an energy distribution that is quite different from that of simple atoms.

Energy Distributions

            We include large numbers of both free atoms and rotors in the same box and fit the energy distributions of each to the following curves:

Free Atoms:

N(E) dE = N 0 E exp(bE) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam OtaiaacIcacaWGfbGaaiykaaqaaiaadsgacaWGfbaaaiabg2da9iaa d6eadaWgaaWcbaGaaGimaaqabaGcdaGcaaqaaiaadweaaSqabaGcci GGLbGaaiiEaiaacchacaGGOaGaeyOeI0IaamOyaiaadweacaGGPaaa aa@452E@  

(1.1)

3D Rotors:

N(E) dE = N 0 E 3 2 exp(bE) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam OtaiaacIcacaWGfbGaaiykaaqaaiaadsgacaWGfbaaaiabg2da9iaa d6eadaWgaaWcbaGaaGimaaqabaGccaWGfbWaaWbaaSqabeaadaWcaa qaaiaaiodaaeaacaaIYaaaaaaakiGacwgacaGG4bGaaiiCaiaacIca cqGHsislcaWGIbGaamyraiaacMcaaaa@46C9@  

(1.2)

The two relations above stem from the densities of speeds:

Free Atoms:

dN(v) dv = N 0 v 2 exp(b v 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiaad6eacaGGOaGaamODaiaacMcaaeaacaWGKbGaamODaaaacqGH 9aqpcaWGobWaaSbaaSqaaiaaicdaaeqaaOGaamODamaaCaaaleqaba GaaGOmaaaakiGacwgacaGG4bGaaiiCaiaacIcacqGHsislcaWGIbGa amODamaaCaaaleqabaGaaGOmaaaakiaacMcaaaa@489C@  

(1.3)

3D Rotors:

dN(v) dv = N 0 v 4 exp(b v 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiaad6eacaGGOaGaamODaiaacMcaaeaacaWGKbGaamODaaaacqGH 9aqpcaWGobWaaSbaaSqaaiaaicdaaeqaaOGaamODamaaCaaaleqaba GaaGinaaaakiGacwgacaGG4bGaaiiCaiaacIcacqGHsislcaWGIbGa amODamaaCaaaleqabaGaaGOmaaaakiaacMcaaaa@489E@  

(1.4)

since

dE=mvdv MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgacaWGfb Gaeyypa0JaamyBaiaadAhacaWGKbGaamODaaaa@3C75@  

(1.5)

where m is the mass.