Non-Rigid Rotor Stabilized by a Potential

 

Rotor stabilized by Lennard-Jones type potential

Rather than making the spacing between the disks rigid, we can use a potential to keep the rotor disks together.  For this we will use a modified Lennard Jones potential..

The normal LJ potential is given by

V(r)=4ε( ( σ r ) 12 ( σ r ) 6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAfacaGGOa GaamOCaiaacMcacqGH9aqpcaaI0aGaeqyTdu2aaeWaaeaadaqadaqa amaalaaabaGaeq4WdmhabaGaamOCaaaaaiaawIcacaGLPaaadaahaa WcbeqaaiaaigdacaaIYaaaaOGaeyOeI0YaaeWaaeaadaWcaaqaaiab eo8aZbqaaiaadkhaaaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaI2a aaaaGccaGLOaGaayzkaaaaaa@4A42@  

(0.1)

where the minimum potential is -ε and σ is usually chosen as a nominal separation between disks.

We will change this expression by assigning variables to the power of he σ/r ratios.

MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOaa@35EA@  

 

V(r)=4ε( ( σ r ) a ( σ r ) b ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAfacaGGOa GaamOCaiaacMcacqGH9aqpcaaI0aGaeqyTdu2aaeWaaeaadaqadaqa amaalaaabaGaeq4WdmhabaGaamOCaaaaaiaawIcacaGLPaaadaahaa WcbeqaaiaadggaaaGccqGHsisldaqadaqaamaalaaabaGaeq4Wdmha baGaamOCaaaaaiaawIcacaGLPaaadaahaaWcbeqaaiaadkgaaaaaki aawIcacaGLPaaaaaa@49D8@  

(0.2)

The value of r at the minimum potential is computed by setting the derivative of V(r) equal to zero and is

r Vmin = ( a b ) 1 ab σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhadaWgaa WcbaGaamOvaiGac2gacaGGPbGaaiOBaaqabaGccqGH9aqpdaqadaqa amaalaaabaGaamyyaaqaaiaadkgaaaaacaGLOaGaayzkaaWaaWbaaS qabeaadaWcaaqaaiaaigdaaeaacaWGHbGaeyOeI0IaamOyaaaaaaGc cqaHdpWCaaa@44B0@  

(0.3)

This is also r where the force between particles goes to zero. We can use totally similar math to compute the spacing where maximum attractive force occurs.  First defining a power ratio, Pr, using the second derivative of the potential we have:

P r = a(a+1) b(b+1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaWgaa WcbaGaamOCaaqabaGccqGH9aqpdaWcaaqaaiaadggacaGGOaGaamyy aiabgUcaRiaaigdacaGGPaaabaGaamOyaiaacIcacaWGIbGaey4kaS IaaGymaiaacMcaaaaaaa@4289@  

(0.4)

we find that the spacing where maximum attractive force occurs is:

r Fmax =σ P r 1 ab MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhadaWgaa WcbaGaamOraiGac2gacaGGHbGaaiiEaaqabaGccqGH9aqpcqaHdpWC caWGqbWaaSbaaSqaaiaadkhaaeqaaOWaaWbaaSqabeaadaWcaaqaai aaigdaaeaacaWGHbGaeyOeI0IaamOyaaaaaaaaaa@4334@  

(0.5)

and this leads to the value of the maximum attractive force:

F max = 4ε r Fmax ( a P r 2 b P r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaciyBaiaacggacaGG4baabeaakiabg2da9maalaaabaGaaGin aiabew7aLbqaaiaadkhadaWgaaWcbaGaamOraiGac2gacaGGHbGaai iEaaqabaaaaOWaaeWaaeaadaWcaaqaaiaadggaaeaacaWGqbWaa0ba aSqaaiaadkhaaeaacaaIYaaaaaaakiabgkHiTmaalaaabaGaamOyaa qaaiaadcfadaWgaaWcbaGaamOCaaqabaaaaaGccaGLOaGaayzkaaaa aa@4B2B@  

(0.6)

Using Fmax we can compute the maximum rotational speed that the diatomic molecule can have, and remain bound, for a given value of ε:

m v 2 r Fmax 2 <= F max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaWcaa qaaiaadAhadaahaaWcbeqaaiaaikdaaaaakeaadaWcaaqaaiaadkha daWgaaWcbaGaamOraiGac2gacaGGHbGaaiiEaaqabaaakeaacaaIYa aaaaaacqGH8aapcqGH9aqpcaWGgbWaaSbaaSqaaiGac2gacaGGHbGa aiiEaaqabaaaaa@4448@  

(0.7)

or

v<= F max r Fmax 2m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAhacqGH8a apcqGH9aqpdaGcaaqaamaalaaabaGaamOramaaBaaaleaaciGGTbGa aiyyaiaacIhaaeqaaOGaamOCamaaBaaaleaacaGGgbGaciyBaiaacg gacaGG4baabeaaaOqaaiaaikdacaWGTbaaaaWcbeaaaaa@4369@  

(0.8)

where m is the mass of a single atom.

We can choose an initial separation for the atoms such that their separation stays constant by solving for r0 in the following equation:

F LJ ( r 0 )+ 2m v 2 r 0 =0 4ε( a ( σ r 0 ) a b ( σ r 0 ) b ) r 0 + 2m v 2 r 0 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamOram aaBaaaleaacaWGmbGaamOsaaqabaGccaGGOaGaamOCamaaBaaaleaa caaIWaaabeaakiaacMcacqGHRaWkdaWcaaqaaiaaikdacaWGTbGaam ODamaaCaaaleqabaGaaGOmaaaaaOqaaiaadkhadaWgaaWcbaGaaGim aaqabaaaaOGaeyypa0JaaGimaaqaamaalaaabaGaaGinaiabew7aLn aabmaabaGaamyyamaabmaabaWaaSaaaeaacqaHdpWCaeaacaWGYbWa aSbaaSqaaiaaicdaaeqaaaaaaOGaayjkaiaawMcaamaaCaaaleqaba GaamyyaaaakiabgkHiTiaadkgadaqadaqaamaalaaabaGaeq4Wdmha baGaamOCamaaBaaaleaacaaIWaaabeaaaaaakiaawIcacaGLPaaada ahaaWcbeqaaiaadkgaaaaakiaawIcacaGLPaaaaeaacaWGYbWaaSba aSqaaiaaicdaaeqaaaaakiabgUcaRmaalaaabaGaaGOmaiaad2gaca WG2bWaaWbaaSqabeaacaaIYaaaaaGcbaGaamOCamaaBaaaleaacaaI WaaabeaaaaGccqGH9aqpcaaIWaaaaaa@619D@  

(0.9)

Equation (0.9) can always be solved by a Newton-Raphson numerical method or it can be solved algebraically for the special case a=2b:

If we let u= ( σ r 0 ) b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwhacqGH9a qpdaqadaqaamaalaaabaGaeq4WdmhabaGaamOCamaaBaaaleaacaaI WaaabeaaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaadkgaaaaaaa@3E43@  then we can rewrite equation (0.9)

 

2b u 2 bu+2 m v 2 4ε =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaikdacaWGIb GaamyDamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadkgacaWG1bGa ey4kaSIaaGOmamaalaaabaGaamyBaiaadAhadaahaaWcbeqaaiaaik daaaaakeaacaaI0aGaeqyTdugaaiabg2da9iaaicdaaaa@44FC@  

(0.10)

and equation (0.10) is recognized as a simple quadratic equation.  The solution for u is

u= b+ b 2 16b m v 2 4ε 4b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwhacqGH9a qpdaWcaaqaaiaadkgacqGHRaWkdaGcaaqaaiaadkgadaahaaWcbeqa aiaaikdaaaGccqGHsislcaaIXaGaaGOnaiaadkgadaWcaaqaaiaad2 gacaWG2bWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGinaiabew7aLbaa aSqabaaakeaacaaI0aGaamOyaaaaaaa@460C@  

(0.11)

Again, for the special case a=2b we can write a better expression for vmax

v max = bε 4m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAhadaWgaa WcbaGaciyBaiaacggacaGG4baabeaakiabg2da9maakaaabaWaaSaa aeaacaWGIbGaeqyTdugabaGaaGinaiaad2gaaaaaleqaaaaa@3F5F@  

(0.12)

When the rotor is hit by another particle, it could easily be unbound unless the value of ε for the rotor binding is much larger than the value for the other particle.  It seems prudent to choose the interaction potential for this kind of collision to be:

ε RA = ε R ε A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew7aLnaaBa aaleaacaWGsbGaamyqaaqabaGccqGH9aqpdaGcaaqaaiabew7aLnaa BaaaleaacaWGsbaabeaakiabew7aLnaaBaaaleaacaWGbbaabeaaae qaaaaa@3FC8@  

(0.13)

where εA is the value of ε for the atom and εR is the value for the rotor.  This should tend to maintain the binding of the rotor components.