Rotor in a Reflective 3D Box

Introduction

            The goal of this animation is to provide a rotational analog to the usual hard sphere collision problem.  The simplest extended rotating model is that of the symmetric rigid rotor with massive spheres at each end of a thin rigid rod.  Just as in the hard sphere collision problem, we will make the assumption that the forces of the collisions are always directed at the centers of the end spheres.  This is equivalent to saying that, during the collision, there is no tangential friction at the surface of the end sphere.  As a result of this assumption, spin about the axis of the rod cannot be induced by collisions since there is no torque moment about this axis.  That is a great simplification, since then we do not have to solve the Euler equations that usually couple the spins about the three axes of the rotor even under torque-free conditions. 

1. Response of a Rotor to an Impulse Applied to One of Its Ends

 

            Before we start, I should say that the bold character symbols in both text and equations  denote vectors or matrices.  This avoids the need for putting arrows over the vectors and matrices.

 

            The basic driver involved in hard object collisions is an impulse.  An impulse is the product of a force times a very small time increment which, of course, leads to a change in momentum like mδv where m is the mass and δv is the change in the velocity.  The time increment is small enough that there will be no significant rotation of the rotor or displacement of its center of mass within the duration of the impulse.  The significant changes in angle and position will occur after the impulse as results of changes in angular spin rate or linear velocity.         

            The specific diagram for this problem is shown below.  To make the problem primitive and simple, initial center of mass speed and rotation rate are zero. The final motion will be a combination of a center of mass velocity, δvx, and a final rotation, at rate δω, about the center of mass.    To start, the impulse is along the -x direction as shown.

Figure 0: Showing the rotor being hit by a mallet at an oblique angle with impulse PxThe impulse will cause a combination of rotation about the Roll (R) and Yaw (Y) axesThe rotation about the pitch (P) axis will not be affected because there is no torque moment about that axis.

 

The change in x momentum is a combination of the change in center of mass velocity and rotation speed δωz.  Here Px is the impulse Fxdt where Fx is the force in the -x direction; Note that Px is negative.:

                       

We have to take into account that there are 2 body axes about which the force impulse can have an effect.  We will arbitrarily call these the roll axis and the yaw axis while the pitch axis will be along the length of the rod connecting the two end spheres.  Initially the pitch axis will be the x axis while the roll axis will be along the y direction and the yaw will be along the z direction (out of and into of the screen).  The program will track the orientations of these three axes and resolve the applied torque into its roll and yaw components. 

The coordinates perpendicular to ρ can be resolved into parts, one of which is along the roll axis and one along the yaw axis.  The pitch axis is not important since it can't receive any torque.

R= r x x+ r y y+ r z z Y= y x x+ y y y+ y z z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaaCOuai abg2da9iaadkhadaWgaaWcbaGaamiEaaqabaGccaWH4bGaey4kaSIa amOCamaaBaaaleaacaWG5bGaaGPaVdqabaGccaWH5bGaey4kaSIaam OCamaaBaaaleaacaWG6baabeaakiaahQhaaeaacaWHzbGaeyypa0Ja amyEamaaBaaaleaacaWG4baabeaakiaahIhacqGHRaWkcaWG5bWaaS baaSqaaiaadMhacaaMc8oabeaakiaahMhacqGHRaWkcaWG5bWaaSba aSqaaiaadQhaaeqaaOGaaCOEaaaaaa@537C@  

(1.1)

While the body axes can be important when we have body-induced forces like on-board thrusters, for the cases analyzed here, all of the forces will come from external sources like impulses or by being hit by other bodies so we will just compute the torques and reaction changes in rotation rates and vectors in the laboratory (x,y,z) coordinate system.

 

Let's take the case where the impulse is along an arbitrary unit vector, c, not aligned with any of the xyz axes. Then we have the following equations:

δv c ^ +( c ^ ×ρ)δω= P m δω c ^ =0 δωρ=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeqiTdq MaaCODaiabgkci3kqahogagaqcaiabgUcaRiaacIcaceWHJbGbaKaa cqGHxdaTcaWHbpGaaiykaiabgkci3kabes7aKjaahM8acqGH9aqpda WcaaqaaiaadcfaaeaacaWGTbaaaaqaaiaahs7acaWHjpGaeyOiGCRa bC4yayaajaGaeyypa0JaaGimaaqaaiaahs7acaWHjpGaaCOiGiaahg 8acqGH9aqpcaaIWaaaaaa@5652@  

(1.2)

where δv is the velocity of the center of mass and ρ is the vector from the center of the rotor to one of its end spheres.

The first of these equations just says that the change in the component of velocity along the c direction is equal, by Newton's law, to P/m, where m is the total mass of the rotor.  The second and third equation say that the change in the vector rotation rate, δω, is perpendicular to both c and ρ.

We can re-write equation (1.2) in terms of its xyz components:

                                                                       

δ v x c x +δ v y c y +δ v z c z + ( c×ρ ) x δ ω x + ( c×ρ ) y δ ω y + ( c×ρ ) z δ ω z = P m c x δ ω x + c y δ ω y + c z δ ω z =0 ρ x δ ω x + ρ y δ ω y + ρ z δ ω z =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeqiTdq MaamODamaaBaaaleaacaWG4baabeaakiaadogadaWgaaWcbaGaamiE aaqabaGccqGHRaWkcqaH0oazcaWG2bWaaSbaaSqaaiaadMhaaeqaaO Gaam4yamaaBaaaleaacaWG5baabeaakiabgUcaRiabes7aKjaadAha daWgaaWcbaGaamOEaaqabaGccaWGJbWaaSbaaSqaaiaadQhaaeqaaO Gaey4kaSYaaeWaaeaacaWHJbGaey41aqRaaCyWdaGaayjkaiaawMca amaaBaaaleaacaWG4baabeaakiabes7aKjabeM8a3naaBaaaleaaca WG4baabeaakiabgUcaRmaabmaabaGaaC4yaiabgEna0kaahg8aaiaa wIcacaGLPaaadaWgaaWcbaGaamyEaaqabaGccqaH0oazcqaHjpWDda WgaaWcbaGaamyEaaqabaGccqGHRaWkdaqadaqaaiaahogacqGHxdaT caWHbpaacaGLOaGaayzkaaWaaSbaaSqaaiaadQhaaeqaaOGaeqiTdq MaeqyYdC3aaSbaaSqaaiaadQhaaeqaaOGaeyypa0ZaaSaaaeaacaWG qbaabaGaamyBaaaaaeaacaWGJbWaaSbaaSqaaiaadIhaaeqaaOGaeq iTdqMaeqyYdC3aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaam4yamaa BaaaleaacaWG5baabeaakiabes7aKjabeM8a3naaBaaaleaacaWG5b aabeaakiabgUcaRiaadogadaWgaaWcbaGaamOEaaqabaGccqaH0oaz cqaHjpWDdaWgaaWcbaGaamOEaaqabaGccqGH9aqpcaaIWaaabaGaeq yWdi3aaSbaaSqaaiaadIhaaeqaaOGaeqiTdqMaeqyYdC3aaSbaaSqa aiaadIhaaeqaaOGaey4kaSIaeqyWdi3aaSbaaSqaaiaadMhaaeqaaO GaeqiTdqMaeqyYdC3aaSbaaSqaaiaadMhaaeqaaOGaey4kaSIaeqyW di3aaSbaaSqaaiaadQhaaeqaaOGaeqiTdqMaeqyYdC3aaSbaaSqaai aadQhaaeqaaOGaeyypa0JaaGimaaaaaa@A43F@  

(1.3)

 

Then the matrix and vector expression becomes:

( c y ρ z c z ρ y c x ρ z + c z ρ x c x ρ y c y ρ x c x c y c z ρ x ρ y ρ z )( δ ω x δ ω y δ ω z )=( P m δv )( 1 0 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaqbae qabmWaaaqaaiaadogadaWgaaWcbaGaamyEaaqabaGccqaHbpGCdaWg aaWcbaGaamOEaaqabaGccqGHsislcaWGJbWaaSbaaSqaaiaadQhaae qaaOGaeqyWdi3aaSbaaSqaaiaadMhaaeqaaaGcbaGaeyOeI0Iaam4y amaaBaaaleaacaWG4baabeaakiabeg8aYnaaBaaaleaacaWG6baabe aakiabgUcaRiaadogadaWgaaWcbaGaamOEaaqabaGccqaHbpGCdaWg aaWcbaGaamiEaaqabaaakeaacaWGJbWaaSbaaSqaaiaadIhaaeqaaO GaeqyWdi3aaSbaaSqaaiaadMhaaeqaaOGaeyOeI0Iaam4yamaaBaaa leaacaWG5baabeaakiabeg8aYnaaBaaaleaacaWG4baabeaaaOqaai aadogadaWgaaWcbaGaamiEaaqabaaakeaacaWGJbWaaSbaaSqaaiaa dMhaaeqaaaGcbaGaam4yamaaBaaaleaacaWG6baabeaaaOqaaiabeg 8aYnaaBaaaleaacaWG4baabeaaaOqaaiabeg8aYnaaBaaaleaacaWG 5baabeaaaOqaaiabeg8aYnaaBaaaleaacaWG6baabeaaaaaakiaawI cacaGLPaaadaqadaqaauaabeqadeaaaeaacqaH0oazcqaHjpWDdaWg aaWcbaGaamiEaaqabaaakeaacqaH0oazcqaHjpWDdaWgaaWcbaGaam yEaaqabaaakeaacqaH0oazcqaHjpWDdaWgaaWcbaGaamOEaaqabaaa aaGccaGLOaGaayzkaaGaeyypa0ZaaeWaaeaadaWcaaqaaiaadcfaae aacaWGTbaaaiabgkHiTiabes7aKjaadAhaaiaawIcacaGLPaaadaqa daqaauaabeqadeaaaeaacaaIXaaabaGaaGimaaqaaiaaicdaaaaaca GLOaGaayzkaaaaaa@8408@  

(1.4)

( (c×ρ) x (c×ρ) y (c×ρ) z c x c y c z ρ x ρ y ρ z )( δ ω x δ ω y δ ω z )=( P m δv )( 1 0 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaqbae qabmWaaaqaaiaacIcacaWHJbGaaC41aiaahg8acaGGPaWaaSbaaSqa aiaadIhaaeqaaaGcbaGaaiikaiaahogacaWHxdGaaCyWdiaacMcada WgaaWcbaGaamyEaaqabaaakeaacaGGOaGaaC4yaiaahEnacaWHbpGa aiykamaaBaaaleaacaWG6baabeaaaOqaaiaadogadaWgaaWcbaGaam iEaaqabaaakeaacaWGJbWaaSbaaSqaaiaadMhaaeqaaaGcbaGaam4y amaaBaaaleaacaWG6baabeaaaOqaaiabeg8aYnaaBaaaleaacaWG4b aabeaaaOqaaiabeg8aYnaaBaaaleaacaWG5baabeaaaOqaaiabeg8a YnaaBaaaleaacaWG6baabeaaaaaakiaawIcacaGLPaaadaqadaqaau aabeqadeaaaeaacqaH0oazcqaHjpWDdaWgaaWcbaGaamiEaaqabaaa keaacqaH0oazcqaHjpWDdaWgaaWcbaGaamyEaaqabaaakeaacqaH0o azcqaHjpWDdaWgaaWcbaGaamOEaaqabaaaaaGccaGLOaGaayzkaaGa eyypa0ZaaeWaaeaadaWcaaqaaiaadcfaaeaacaWGTbaaaiabgkHiTi abes7aKjaadAhaaiaawIcacaGLPaaadaqadaqaauaabeqadeaaaeaa caaIXaaabaGaaGimaaqaaiaaicdaaaaacaGLOaGaayzkaaaaaa@7471@  

(1.5)

 

Solving equation (1.5) we obtain:

( δ ω x δ ω y δ ω z )= ( P m δv ) det ( (c×ρ) x (c×ρ) y (c×ρ) z ) det= ( c×ρ ) x ρ y c z + ( c×ρ ) x ρ z c y + ( c×ρ ) y r ρ x c z ( c×ρ ) z ρ x c y ( c×ρ ) y ρ z c x + ( c×ρ ) z ρ y c x det= ( c×ρ ) x 2 + ( c×ρ ) y 2 + ( c×ρ ) z 2 ( δ ω x δ ω y δ ω z )= ( P m δv ) (c×ρ)(c×ρ) ( (c×ρ) x (c×ρ) y (c×ρ) z ) δω= ( P m δv ) (c×ρ)(c×ρ) (c×ρ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaWaaeWaae aafaqabeWabaaabaGaeqiTdqMaeqyYdC3aaSbaaSqaaiaadIhaaeqa aaGcbaGaeqiTdqMaeqyYdC3aaSbaaSqaaiaadMhaaeqaaaGcbaGaeq iTdqMaeqyYdC3aaSbaaSqaaiaadQhaaeqaaaaaaOGaayjkaiaawMca aiabg2da9maalaaabaWaaeWaaeaadaWcaaqaaiaadcfaaeaacaWGTb aaaiabgkHiTiabes7aKjaadAhaaiaawIcacaGLPaaaaeaaciGGKbGa aiyzaiaacshaaaWaaeWaaeaafaqabeWabaaabaGaaiikaiaahogaca WHxdGaaCyWdiaacMcadaWgaaWcbaGaamiEaaqabaaakeaacaGGOaGa aC4yaiaahEnacaWHbpGaaiykamaaBaaaleaacaWG5baabeaaaOqaai aacIcacaWHJbGaaC41aiaahg8acaGGPaWaaSbaaSqaaiaadQhaaeqa aaaaaOGaayjkaiaawMcaaaqaaiGacsgacaGGLbGaaiiDaiabg2da9i abgkHiTmaabmaabaGaaC4yaiabgEna0kaahg8aaiaawIcacaGLPaaa daWgaaWcbaGaamiEaaqabaGccqaHbpGCdaWgaaWcbaGaamyEaaqaba GccaWGJbWaaSbaaSqaaiaadQhaaeqaaOGaey4kaSYaaeWaaeaacaWH JbGaey41aqRaaCyWdaGaayjkaiaawMcaamaaBaaaleaacaWG4baabe aakiabeg8aYnaaBaaaleaacaWG6baabeaakiaadogadaWgaaWcbaGa amyEaaqabaGccqGHRaWkdaqadaqaaiaahogacqGHxdaTcaWHbpaaca GLOaGaayzkaaWaaSbaaSqaaiaadMhaaeqaaOGaamOCaiabeg8aYnaa BaaaleaacaWG4baabeaakiaadogadaWgaaWcbaGaamOEaaqabaGccq GHsisldaqadaqaaiaahogacqGHxdaTcaWHbpaacaGLOaGaayzkaaWa aSbaaSqaaiaadQhaaeqaaOGaeqyWdi3aaSbaaSqaaiaadIhaaeqaaO Gaam4yamaaBaaaleaacaWG5baabeaakiabgkHiTmaabmaabaGaaC4y aiabgEna0kaahg8aaiaawIcacaGLPaaadaWgaaWcbaGaamyEaaqaba GccqaHbpGCdaWgaaWcbaGaamOEaaqabaGccaWGJbWaaSbaaSqaaiaa dIhaaeqaaOGaey4kaSYaaeWaaeaacaWHJbGaey41aqRaaCyWdaGaay jkaiaawMcaamaaBaaaleaacaWG6baabeaakiabeg8aYnaaBaaaleaa caWG5baabeaakiaadogadaWgaaWcbaGaamiEaaqabaaakeaaciGGKb GaaiyzaiaacshacqGH9aqpdaqadaqaaiaahogacqGHxdaTcaWHbpaa caGLOaGaayzkaaWaa0baaSqaaiaadIhaaeaacaaIYaaaaOGaey4kaS YaaeWaaeaacaWHJbGaey41aqRaaCyWdaGaayjkaiaawMcaamaaDaaa leaacaWG5baabaGaaGOmaaaakiabgUcaRmaabmaabaGaaC4yaiabgE na0kaahg8aaiaawIcacaGLPaaadaqhaaWcbaGaamOEaaqaaiaaikda aaaakeaadaqadaqaauaabeqadeaaaeaacqaH0oazcqaHjpWDdaWgaa WcbaGaamiEaaqabaaakeaacqaH0oazcqaHjpWDdaWgaaWcbaGaamyE aaqabaaakeaacqaH0oazcqaHjpWDdaWgaaWcbaGaamOEaaqabaaaaa GccaGLOaGaayzkaaGaeyypa0ZaaSaaaeaadaqadaqaamaalaaabaGa amiuaaqaaiaad2gaaaGaeyOeI0IaeqiTdqMaamODaaGaayjkaiaawM caaaqaaiaacIcacaWHJbGaaC41aiaahg8acaGGPaGaeyOiGCRaaiik aiaahogacaWHxdGaaCyWdiaacMcaaaWaaeWaaeaafaqabeWabaaaba GaaiikaiaahogacaWHxdGaaCyWdiaacMcadaWgaaWcbaGaamiEaaqa baaakeaacaGGOaGaaC4yaiaahEnacaWHbpGaaiykamaaBaaaleaaca WG5baabeaaaOqaaiaacIcacaWHJbGaaC41aiaahg8acaGGPaWaaSba aSqaaiaadQhaaeqaaaaaaOGaayjkaiaawMcaaaqaaiabes7aKjaahM 8acqGH9aqpdaWcaaqaamaabmaabaWaaSaaaeaacaWGqbaabaGaamyB aaaacqGHsislcqaH0oazcaWG2baacaGLOaGaayzkaaaabaGaaiikai aahogacaWHxdGaaCyWdiaacMcacqGHIaYTcaGGOaGaaC4yaiaahEna caWHbpGaaiykaaaacaGGOaGaaC4yaiaahEnacaWHbpGaaiykaaaaaa@2685@         (1.6)

 

 

We need to insert the values of δω2 into an energy conservation equation.

1 2 ( mδ v c 2 +m l 2 δ ω 2 )=P δv+( c ^ ×ρ)δω 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaaqaaiaaikdaaaWaaeWaaeaacaWGTbGaeqiTdqMaamODamaaBaaa leaacaWGJbaabeaakmaaCaaaleqabaGaaGOmaaaakiabgUcaRiaad2 gacaWGSbWaaWbaaSqabeaacaaIYaaaaOGaeqiTdqMaeqyYdC3aaWba aSqabeaacaaIYaaaaaGccaGLOaGaayzkaaGaeyypa0Jaamiuamaala aabaGaeqiTdqMaamODaiabgUcaRiaacIcaceWHJbGbaKaacqGHxdaT caWHbpGaaiykaiabgkci3kabes7aKjaahM8aaeaacaaIYaaaaaaa@571C@  

(1.7)

and then solve the resulting quadratic equation for δvc.  Note that:

 

δ ω 2 = ( P m δv ) 2 (c×ρ) 2 (c×ρ)δω= P m δv MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeqiTdq MaeqyYdC3aaWbaaSqabeaacaaIYaaaaOGaeyypa0ZaaSaaaeaadaqa daqaamaalaaabaGaamiuaaqaaiaad2gaaaGaeyOeI0IaeqiTdqMaam ODaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaOqaaiaacIca caWHJbGaaC41aiaahg8acaGGPaWaaWbaaSqabeaacaaIYaaaaaaaaO qaaiaacIcacaWHJbGaaC41aiaahg8acaGGPaGaeyOiGCRaaCiTdiaa hM8acqGH9aqpdaWcaaqaaiaadcfaaeaacaWGTbaaaiabgkHiTiabes 7aKjaadAhaaaaa@58A8@  

(1.8)

                                                                       

1 2 ( mδ v 2 +m l 2 ( P m δv ) 2 (c×ρ)(c×ρ) )=P δv+( P m δv ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaaqaaiaaikdaaaWaaeWaaeaacaWGTbGaeqiTdqMaamODamaaCaaa leqabaGaaGOmaaaakiabgUcaRiaad2gacaWGSbWaaWbaaSqabeaaca aIYaaaaOWaaSaaaeaadaqadaqaamaalaaabaGaamiuaaqaaiaad2ga aaGaeyOeI0IaeqiTdqMaamODaaGaayjkaiaawMcaamaaCaaaleqaba GaaGOmaaaaaOqaaiaacIcacaWHJbGaaC41aiaahg8acaGGPaGaeyOi GCRaaiikaiaahogacaWHxdGaaCyWdiaacMcaaaaacaGLOaGaayzkaa Gaeyypa0JaamiuamaalaaabaGaeqiTdqMaamODaiabgUcaRmaabmaa baWaaSaaaeaacaWGqbaabaGaamyBaaaacqGHsislcqaH0oazcaWG2b aacaGLOaGaayzkaaaabaGaaGOmaaaaaaa@61A7@                                                          (1.9)

 

 

The solutions for δv and δω are then:

                                                                       

δv= l 2 |c×ρ | 2 l 2 +|c×ρ | 2 P m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaadA hacqGH9aqpdaWcaaqaaiaadYgadaahaaWcbeqaaiaaikdaaaGccqGH sislcaGG8bGaaC4yaiaahEnacaWHbpGaaiiFamaaCaaaleqabaGaaG OmaaaaaOqaaiaadYgadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaGG 8bGaaC4yaiaahEnacaWHbpGaaiiFamaaCaaaleqabaGaaGOmaaaaaa GcdaWcaaqaaiaadcfaaeaacaWGTbaaaaaa@4E27@  

(1.10)

P m δv=2 P m |c×ρ | 2 l 2 +|c×ρ | 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam iuaaqaaiaad2gaaaGaeyOeI0IaeqiTdqMaamODaiabg2da9iaaikda daWcaaqaaiaadcfaaeaacaWGTbaaamaalaaabaGaaiiFaiaahogaca WHxdGaaCyWdiaacYhadaahaaWcbeqaaiaaikdaaaaakeaacaWGSbWa aWbaaSqabeaacaaIYaaaaOGaey4kaSIaaiiFaiaahogacaWHxdGaaC yWdiaacYhadaahaaWcbeqaaiaaikdaaaaaaaaa@4ECC@  

(1.11)

( δ ω x δ ω y δ ω z )= 2P m( l 2 + (c×ρ) 2 ] ( (c×ρ) x (c×ρ) y (c×ρ) z ) δω= 2P m( l 2 + (c×ρ) 2 ] (c×ρ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaWaaeWaae aafaqabeWabaaabaGaeqiTdqMaeqyYdC3aaSbaaSqaaiaadIhaaeqa aaGcbaGaeqiTdqMaeqyYdC3aaSbaaSqaaiaadMhaaeqaaaGcbaGaeq iTdqMaeqyYdC3aaSbaaSqaaiaadQhaaeqaaaaaaOGaayjkaiaawMca aiabg2da9maalaaabaGaaGOmaiaadcfaaeaacaWGTbGaaiikaiaadY gadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaGGOaGaaC4yaiaahEna caWHbpGaaiykamaaCaaaleqabaGaaGOmaaaakiaac2faaaWaaeWaae aafaqabeWabaaabaGaaiikaiaahogacaWHxdGaaCyWdiaacMcadaWg aaWcbaGaamiEaaqabaaakeaacaGGOaGaaC4yaiaahEnacaWHbpGaai ykamaaBaaaleaacaWG5baabeaaaOqaaiaacIcacaWHJbGaaC41aiaa hg8acaGGPaWaaSbaaSqaaiaadQhaaeqaaaaaaOGaayjkaiaawMcaaa qaaiabes7aKjaahM8acqGH9aqpdaWcaaqaaiaaikdacaWGqbaabaGa amyBaiaacIcacaWGSbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaai ikaiaahogacaWHxdGaaCyWdiaacMcadaahaaWcbeqaaiaaikdaaaGc caGGDbaaaiaacIcacaWHJbGaaC41aiaahg8acaGGPaaaaaa@7D14@  

(1.12)

 

The new spin rate vector is ω+δω.

 

To incrementally change the orientation of the rotor about this new spin axis, we apply the Rodrigues matrix below:

M R =( c+ u x 2 (1c) u x u y (1c) u z s u x u z (1c)+ u y s u y u x (1c)+ u z s c+ u y 2 (1c) u y u z (1c) u x s u z u x (1c) u y s u z u y (1c)+ u x s c+ u z 2 (1c) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaah2eadaWgaa WcbaGaamOuaaqabaGccqGH9aqpdaqadaqaauaabeqadmaaaeaacaWG JbGaey4kaSIaamyDamaaDaaaleaacaWG4baabaGaaGOmaaaakiaacI cacaaIXaGaeyOeI0Iaam4yaiaacMcaaeaacaWG1bWaaSbaaSqaaiaa dIhaaeqaaOGaamyDamaaBaaaleaacaWG5baabeaakiaacIcacaaIXa GaeyOeI0Iaam4yaiaacMcacqGHsislcaWG1bWaaSbaaSqaaiaadQha aeqaaOGaam4CaaqaaiaadwhadaWgaaWcbaGaamiEaaqabaGccaWG1b WaaSbaaSqaaiaadQhaaeqaaOGaaiikaiaaigdacqGHsislcaWGJbGa aiykaiabgUcaRiaadwhadaWgaaWcbaGaamyEaaqabaGccaWGZbaaba GaamyDamaaBaaaleaacaWG5baabeaakiaadwhadaWgaaWcbaGaamiE aaqabaGccaGGOaGaaGymaiabgkHiTiaadogacaGGPaGaey4kaSIaam yDamaaBaaaleaacaWG6baabeaakiaadohaaeaacaWGJbGaey4kaSIa amyDamaaDaaaleaacaWG5baabaGaaGOmaaaakiaacIcacaaIXaGaey OeI0Iaam4yaiaacMcaaeaacaWG1bWaaSbaaSqaaiaadMhaaeqaaOGa amyDamaaBaaaleaacaWG6baabeaakiaacIcacaaIXaGaeyOeI0Iaam 4yaiaacMcacqGHsislcaWG1bWaaSbaaSqaaiaadIhaaeqaaOGaam4C aaqaaiaadwhadaWgaaWcbaGaamOEaaqabaGccaWG1bWaaSbaaSqaai aadIhaaeqaaOGaaiikaiaaigdacqGHsislcaWGJbGaaiykaiabgkHi TiaadwhadaWgaaWcbaGaamyEaaqabaGccaWGZbaabaGaamyDamaaBa aaleaacaWG6baabeaakiaadwhadaWgaaWcbaGaamyEaaqabaGccaGG OaGaaGymaiabgkHiTiaadogacaGGPaGaey4kaSIaamyDamaaBaaale aacaWG4baabeaakiaadohaaeaacaWGJbGaey4kaSIaamyDamaaDaaa leaacaWG6baabaGaaGOmaaaakiaacIcacaaIXaGaeyOeI0Iaam4yai aacMcaaaaacaGLOaGaayzkaaaaaa@9E3D@  

(1.13)

where

c=cosωδt s=sinωδt u= ω |ω| MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaam4yai abg2da9iGacogacaGGVbGaai4CaiabeM8a3jabes7aKjaacshacaaM c8UaaGPaVdqaaiaadohacqGH9aqpcaGGZbGaaiyAaiaac6gacqaHjp WDcqaH0oazcaGG0baabaGaaCyDaiabg2da9maalaaabaGaaCyYdaqa aiaacYhacaWHjpGaaiiFaaaaaaaa@5230@  

(1.14)

and δt is the time increment.

2. Collision with a flat rigid surface

It is expected that the rigid surface collision will result in negation of the normal component of v, the total velocity due to both rotation and linear motion, but the energy of the rotor will not be changed.  For this simulation it will be assumed that there is no friction between the wall and the rotor end.  That is, the wall applies no impulse parallel to its surface.   

Figure 1: Illustration of rotor hitting surface x=constant with rotational angle a and center of mass velocity v.  The distance between the centers of the end Spheres is 2l and the radius of the end Spheres is b.  The Roll (R) and Yaw (Y) axes are shown

 

In the case of a collision with a rigid wall, the impulse discussed in section 1 is just twice the negative of the x component of the incident momentum. That means that the normal component of the velocity of the end sphere hitting the x=+constant wall gets negated.  For generality, let x=c where c is the unit vector along the outward normal to any of the 6 walls.

            v'c+(ρ×c)ω'=[vx+(ρ×c)ω] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahAhacaGGNa GaaCOiGiaahogacqGHRaWkcaGGOaGaaGjbVlaahg8acaWHxdGaaC4y aiaahMcacaWHIaIaaCyYdiaacEcacqGH9aqpcqGHsislcaGGBbGaaC ODaiaahkcicaWH4bGaey4kaSIaaiikaiaahg8acaWHxdGaaC4yaiaa hMcacaWHIaIaaCyYdiaac2facaaMc8UaaGPaVlaaykW7caaMc8oaaa@5820@ (2.1)

where - (c×ρ)ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcacaWHJb GaaC41aiaahg8acaWHPaGaaCOiGiaahM8aaaa@3D02@  is equal to the c component of the velocity due to the rotational motion of the rotor. 

 

Also note that, by definition, ρ and ω are always perpendicular,

ρω'=ρω=ρδω=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahg8acqGHIa YTcaWHjpGaaC4jaiaah2dacaWHbpGaeyOiGCRaaCyYdiabg2da9iaa hg8acqGHIaYTcqaH0oazcaWHjpGaeyypa0JaaGimaaaa@4841@  

(2.2)

 

Further, the component of ω parallel to c does not result in a change of ω.

cδω=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahogacaWHIa IaaCiTdiaahM8acqGH9aqpcaaIWaaaaa@3BF7@  

(2.3)

All of these equations are valid regardless of the coordinate system in which c, ω and ρ are described.  We simply choose to work in the xyz system and to convert, if needed, to body rotations afterward.  Rewriting equations (2.1), (2.2) and (2.3) in matrix form and setting c=x for the general case we have:

 

                                                                       

                                                                       

( (ρ×c) x (ρ×c) y (ρ×c) z c x c y c z ρ x ρ y ρ z )( δ ω x δ ω z δ ω z )=( v c v c '2(ρ×c)ω )( 1 0 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaqbae qabmWaaaqaaiaacIcacaWHbpGaaC41aiaahogacaGGPaWaaSbaaSqa aiaadIhaaeqaaaGcbaGaaiikaiaahg8acaWHxdGaaC4yaiaacMcada WgaaWcbaGaamyEaaqabaaakeaacaGGOaGaaCyWdiaahEnacaWHJbGa aiykamaaBaaaleaacaWG6baabeaaaOqaaiaadogadaWgaaWcbaGaam iEaaqabaaakeaacaWGJbWaaSbaaSqaaiaadMhaaeqaaaGcbaGaam4y amaaBaaaleaacaWG6baabeaaaOqaaiabeg8aYnaaBaaaleaacaWG4b aabeaaaOqaaiabeg8aYnaaBaaaleaacaWG5baabeaaaOqaaiabeg8a YnaaBaaaleaacaWG6baabeaaaaaakiaawIcacaGLPaaadaqadaqaau aabeqadeaaaeaacqaH0oazcqaHjpWDdaWgaaWcbaGaamiEaaqabaaa keaacqaH0oazcqaHjpWDdaWgaaWcbaGaamOEaaqabaaakeaacqaH0o azcqaHjpWDdaWgaaWcbaGaamOEaaqabaaaaaGccaGLOaGaayzkaaGa eyypa0ZaaeWaaeaacqGHsislcaWG2bWaaSbaaSqaaiaadogaaeqaaO GaeyOeI0IaamODamaaBaaaleaacaWGJbaabeaakiaacEcacqGHsisl caaIYaGaaiikaiaahg8acaWHxdGaaC4yaiaacMcacqGHIaYTcaWHjp aacaGLOaGaayzkaaWaaeWaaeaafaqabeWabaaabaGaaGymaaqaaiaa icdaaeaacaaIWaaaaaGaayjkaiaawMcaaaaa@7F3A@  

(2.4)

 

After taking the inverse of the matrix on the left, the solution for δω in equation (2.4) is:

δω=( δ ω x δ ω y δ ω z )= ( v c v c '2(ρ×c)ω ) (ρ×c)(ρ×c) ( (ρ×c) x (ρ×c) y (ρ×c) z )= ( v c v c '2(ρ×c)ω ) (ρ×c)(ρ×c) (ρ×c) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaahM 8acqGH9aqpdaqadaqaauaabeqadeaaaeaacqaH0oazcqaHjpWDdaWg aaWcbaGaamiEaaqabaaakeaacqaH0oazcqaHjpWDdaWgaaWcbaGaam yEaaqabaaakeaacqaH0oazcqaHjpWDdaWgaaWcbaGaamOEaaqabaaa aaGccaGLOaGaayzkaaGaeyypa0ZaaSaaaeaadaqadaqaaiabgkHiTi aadAhadaWgaaWcbaGaam4yaaqabaGccqGHsislcaWG2bWaaSbaaSqa aiaadogaaeqaaOGaai4jaiabgkHiTiaaikdacaGGOaGaaCyWdiaahE nacaWHJbGaaiykaiabgkci3kaahM8aaiaawIcacaGLPaaaaeaacaGG OaGaaCyWdiaahEnacaWHJbGaaiykaiabgkci3kaacIcacaWHbpGaaC 41aiaahogacaGGPaaaamaabmaabaqbaeqabmqaaaqaaiaacIcacaWH bpGaaC41aiaahogacaGGPaWaaSbaaSqaaiaadIhaaeqaaaGcbaGaai ikaiaahg8acaWHxdGaaC4yaiaacMcadaWgaaWcbaGaamyEaaqabaaa keaacaGGOaGaaCyWdiaahEnacaWHJbGaaiykamaaBaaaleaacaWG6b aabeaaaaaakiaawIcacaGLPaaacqGH9aqpdaWcaaqaamaabmaabaGa eyOeI0IaamODamaaBaaaleaacaWGJbaabeaakiabgkHiTiaadAhada WgaaWcbaGaam4yaaqabaGccaGGNaGaeyOeI0IaaGOmaiaacIcacaWH bpGaaC41aiaahogacaGGPaGaeyOiGCRaaCyYdaGaayjkaiaawMcaaa qaaiaacIcacaWHbpGaaC41aiaahogacaGGPaGaeyOiGCRaaiikaiaa hg8acaWHxdGaaC4yaiaacMcaaaGaaiikaiaahg8acaWHxdGaaC4yai aacMcaaaa@9ED9@  

(2.5)

 

                                                                                                                                               

The magnitude of the rotational rate after the collision is given by:

                                                                       

ω= ω'ω' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3jabg2 da9maakaaabaGaaCyYdiaacEcacaWHIaIaaCyYdiaacEcaaSqabaaa aa@3DA4@  

(2.6)

where

ω'=ω+δω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahM8acaWHNa GaaCypaiaahM8acaWHRaGaaCiTdiaahM8aaaa@3D54@  

(2.7)

and the new rotation axis unit vector is:

u ω = ω' |ω'| = ω' |(ω'ω')| MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahwhadaWgaa WcbaGaeqyYdChabeaakiabg2da9maalaaabaGaaCyYdiaacEcaaeaa caGG8bGaaCyYdiaacEcacaGG8baaaiabg2da9maalaaabaGaaCyYdi aahEcaaeaadaGcaaqaaiaacYhacaGGOaGaaCyYdiaahEcacqGHIaYT caWHjpGaai4jaiaacMcacaGG8baaleqaaaaaaaa@4C1B@  

(2.8)

which will be the unit vector used in the Rodrigues matrix of the previous section.

 

            We have one more expression from which to obtain the value of vc'.  The conservation of energy equation is:

v c '2 v c 2 + l 2 [ω ' 2 ω 2 ]= v c '2 v c 2 + l 2 [ω ' R 2 +ω ' Y 2 ω R 2 ω Y 2 ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAhadaqhaa WcbaGaam4yaaqaaiaacEcacaaIYaaaaOGaeyOeI0IaamODamaaDaaa leaacaWGJbaabaGaaGOmaaaakiabgUcaRiaadYgadaahaaWcbeqaai aaikdaaaGccaGGBbGaeqyYdCNaai4jamaaCaaaleqabaGaaGOmaaaa kiabgkHiTiabeM8a3naaCaaaleqabaGaaGOmaaaakiaac2facqGH9a qpcaWG2bWaa0baaSqaaiaadogaaeaacaGGNaGaaGOmaaaakiabgkHi TiaadAhadaqhaaWcbaGaam4yaaqaaiaaikdaaaGccqGHRaWkcaWGSb WaaWbaaSqabeaacaaIYaaaaOGaai4waiabeM8a3jaacEcadaWgaaWc baGaamOuaaqabaGcdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcqaHjp WDcaGGNaWaaSbaaSqaaiaadMfaaeqaaOWaaWbaaSqabeaacaaIYaaa aOGaeyOeI0IaeqyYdC3aaSbaaSqaaiaadkfaaeqaaOWaaWbaaSqabe aacaaIYaaaaOGaeyOeI0IaeqyYdC3aaSbaaSqaaiaadMfaaeqaaOWa aWbaaSqabeaacaaIYaaaaOGaaiyxaiabg2da9iaaicdaaaa@6AB1@  

(2.9)

where ωR' and  ωY' are linear functions of v'c. Once we've inserted their v'c dependence into equation (2.9), we can solve what will be a quadratic equation for v'c.

The result is

v c '= v c ( l 2 |ρ×c | 2 )+2 l 2 [(ρ×c)ω] l 2 +|ρ×c | 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAhadaWgaa WcbaGaam4yaaqabaGccaGGNaGaeyypa0JaeyOeI0YaaSaaaeaacaWG 2bWaaSbaaSqaaiaadogaaeqaaOGaaiikaiaadYgadaahaaWcbeqaai aaikdaaaGccqGHsislcaGG8bGaaCyWdiaahEnacaWHJbGaaiiFamaa CaaaleqabaGaaGOmaaaakiaacMcacqGHRaWkcaaIYaGaamiBamaaCa aaleqabaGaaGOmaaaakiaacUfacaGGOaGaaCyWdiaahEnacaWHJbGa aiykaiabgkci3kaahM8acaGGDbaabaGaamiBamaaCaaaleqabaGaaG OmaaaakiabgUcaRiaacYhacaWHbpGaaC41aiaahogacaGG8bWaaWba aSqabeaacaaIYaaaaaaaaaa@5DD7@  

(2.10)

Then the new value of the CM speed is

v ' CM = v CM +( v c ' v c )c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahAhacaGGNa WaaSbaaSqaaiaadoeacaWGnbaabeaakiabg2da9iaahAhadaWgaaWc baGaam4qaiaad2eaaeqaaOGaey4kaSIaaiikaiaadAhadaWgaaWcba Gaam4yaaqabaGccaGGNaGaeyOeI0IaamODamaaBaaaleaacaWGJbaa beaakiaacMcacaWHJbaaaa@462B@  

(2.11)

The value of δω after inserting the new value v'CM into equation (2.5) is:

 

δω= ( v c 2(ρ×c)ω+ v c ( l 2 |ρ×c | 2 )+2 l 2 [(ρ×c)ω] l 2 +|ρ×c | 2 ) |ρ×c | 2 (ρ×c)= ( [ v c 2(ρ×c)ω][ l 2 +|ρ×c | 2 ]+ v c ( l 2 |ρ×c | 2 )+2 l 2 [(ρ×c)ω] ) |ρ×c | 2 [ l 2 +|ρ×c | 2 ] (ρ×c)= 2 (ρ×c)ω|ρ×c | 2 + v c |ρ×c | 2 |ρ×c | 2 [ l 2 +|ρ×c | 2 ] (ρ×c)=2 (ρ×c)ω+ v c l 2 +|ρ×c | 2 (ρ×c) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeqiTdq MaaCyYdiabg2da9maalaaabaWaaeWaaeaacqGHsislcaWG2bWaaSba aSqaaiaadogaaeqaaOGaeyOeI0IaaGOmaiaacIcacaWHbpGaaC41ai aahogacaGGPaGaeyOiGCRaaCyYdiabgUcaRmaalaaabaGaamODamaa BaaaleaacaWGJbaabeaakiaacIcacaWGSbWaaWbaaSqabeaacaaIYa aaaOGaeyOeI0IaaiiFaiaahg8acaWHxdGaaC4yaiaacYhadaahaaWc beqaaiaaikdaaaGccaGGPaGaey4kaSIaaGOmaiaadYgadaahaaWcbe qaaiaaikdaaaGccaGGBbGaaiikaiaahg8acaWHxdGaaC4yaiaacMca cqGHIaYTcaWHjpGaaiyxaaqaaiaadYgadaahaaWcbeqaaiaaikdaaa GccqGHRaWkcaGG8bGaaCyWdiaahEnacaWHJbGaaiiFamaaCaaaleqa baGaaGOmaaaaaaaakiaawIcacaGLPaaaaeaacaGG8bGaaCyWdiaahE nacaWHJbGaaiiFamaaCaaaleqabaGaaGOmaaaaaaGccaGGOaGaaCyW diaahEnacaWHJbGaaiykaiabg2da9aqaamaalaaabaWaaeWaaeaaca GGBbGaeyOeI0IaamODamaaBaaaleaacaWGJbaabeaakiabgkHiTiaa ikdacaGGOaGaaCyWdiaahEnacaWHJbGaaiykaiabgkci3kaahM8aca GGDbGaai4waiaadYgadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaGG 8bGaaCyWdiaahEnacaWHJbGaaiiFamaaCaaaleqabaGaaGOmaaaaki aac2facqGHRaWkcaWG2bWaaSbaaSqaaiaadogaaeqaaOGaaiikaiaa dYgadaahaaWcbeqaaiaaikdaaaGccqGHsislcaGG8bGaaCyWdiaahE nacaWHJbGaaiiFamaaCaaaleqabaGaaGOmaaaakiaacMcacqGHRaWk caaIYaGaamiBamaaCaaaleqabaGaaGOmaaaakiaacUfacaGGOaGaaC yWdiaahEnacaWHJbGaaiykaiabgkci3kaahM8acaGGDbaacaGLOaGa ayzkaaaabaGaaiiFaiaahg8acaWHxdGaaC4yaiaacYhadaahaaWcbe qaaiaaikdaaaGccaGGBbGaamiBamaaCaaaleqabaGaaGOmaaaakiab gUcaRiaacYhacaWHbpGaaC41aiaahogacaGG8bWaaWbaaSqabeaaca aIYaaaaOGaaiyxaaaacaGGOaGaaCyWdiaahEnacaWHJbGaaiykaiab g2da9aqaaiabgkHiTiaaikdadaWcaaqaaiaacIcacaWHbpGaaC41ai aahogacaGGPaGaeyOiGCRaaCyYdiaacYhacaWHbpGaaC41aiaahoga caGG8bWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamODamaaBaaale aacaWGJbaabeaakiaacYhacaWHbpGaaC41aiaahogacaGG8bWaaWba aSqabeaacaaIYaaaaaGcbaGaaiiFaiaahg8acaWHxdGaaC4yaiaacY hadaahaaWcbeqaaiaaikdaaaGccaGGBbGaamiBamaaCaaaleqabaGa aGOmaaaakiabgUcaRiaacYhacaWHbpGaaC41aiaahogacaGG8bWaaW baaSqabeaacaaIYaaaaOGaaiyxaaaacaGGOaGaaCyWdiaahEnacaWH JbGaaiykaiabg2da9iabgkHiTiaaikdadaWcaaqaaiaacIcacaWHbp GaaC41aiaahogacaGGPaGaeyOiGCRaaCyYdiabgUcaRiaadAhadaWg aaWcbaGaam4yaaqabaaakeaacaWGSbWaaWbaaSqabeaacaaIYaaaaO Gaey4kaSIaaiiFaiaahg8acaWHxdGaaC4yaiaacYhadaahaaWcbeqa aiaaikdaaaaaaOGaaiikaiaahg8acaWHxdGaaC4yaiaacMcaaaaa@11D9@  

(2.12)

                                                                   (2.13)

 

 

Rotor-Sphere Collisions

 

Figure 2: Illustration of rotor and a free sphere.  The rotor rotational angle is  a and center of mass velocity v  The distance between the centers of the rotor end spheres is 2l0 and the radius of the end Spheres is br while the single Sphere radius is bs Thus a collision is computed when the distance between Sphere center and either rotor end center is less than br+bs     

 

            For the case of a Rotor and a free Sphere, the linear momentum associated with the Sphere and rotor center of mass (CM) velocity must be conserved and the angular momentum, LCM, associated with their linear momentum about their CM as well as the simple rotational angular momentum, Lω, of the Rotor must be conserved.  Having used the linear and angular momentum conservation equations to compute the new values of Rotor rotation rate, we must then use the conservation of energy equation to compute the new values of their relative velocity with respect to their previous velocities.  These results will always center around their c unit vector which is the vector between the center of the Sphere and the center of the rotor end with which it collides.  Recall from the previous 2D Rotor calculations that the angular momentum associated with the linear motion of the 2 masses is:

 

L CM = M r ( r r r s )×( v r v s ) M r = m r m s m r + m s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaaCitam aaBaaaleaacaWGdbGaamytaaqabaGccqGH9aqpcaWGnbWaaSbaaSqa aiaadkhaaeqaaOGaaiikaiaahkhadaWgaaWcbaGaamOCaaqabaGccq GHsislcaWHYbWaaSbaaSqaaiaadohaaeqaaOGaaiykaiabgEna0kaa cIcacaWH2bWaaSbaaSqaaiaadkhaaeqaaOGaeyOeI0IaaCODamaaBa aaleaacaWGZbaabeaakiaacMcaaeaacaWGnbWaaSbaaSqaaiaadkha aeqaaOGaeyypa0ZaaSaaaeaacaWGTbWaaSbaaSqaaiaadkhaaeqaaO GaamyBamaaBaaaleaacaWGZbaabeaaaOqaaiaad2gadaWgaaWcbaGa amOCaaqabaGccqGHRaWkcaWGTbWaaSbaaSqaaiaadohaaeqaaaaaaa aa@5754@  

(2.14)

where the subscripts r and s refer to the values for the rotor and free sphere and the ms are their masses, respectively.

The angular momentum of the rotor about its axis is:

L ω = m r l 2 ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahYeadaWgaa WcbaGaeqyYdChabeaakiabg2da9iaad2gadaWgaaWcbaGaamOCaaqa baGccaWGSbWaaWbaaSqabeaacaaIYaaaaOGaaCyYdaaa@3F21@  

(2.15)

and the linear momentum of the 2 masses is:

P CM = m r v r + m s v s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaWgaa WcbaGaam4qaiaad2eaaeqaaOGaeyypa0JaamyBamaaBaaaleaacaWG YbaabeaakiaahAhadaWgaaWcbaGaamOCaaqabaGccqGHRaWkcaWGTb WaaSbaaSqaaiaadohaaeqaaOGaaCODamaaBaaaleaacaWGZbaabeaa aaa@4306@  

(2.16)

 

The velocities of the two masses will change along the c vector.  If we name the as yet unknown magnitude of the rotor CM speed change δv, then, from equation (2.16), the Sphere speed change will be -(mr/ms)δv.  The expression for the conservation of angular momentum of is a bit more elaborate.  The equation for the final angular momentum is:

L'= M r ( r r r s )×[ v r +δvc( v s δvc m r m s )]+ m r l 2 ω' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahYeacaGGNa Gaeyypa0JaamytamaaBaaaleaacaWGYbaabeaakiaacIcacaWHYbWa aSbaaSqaaiaadkhaaeqaaOGaeyOeI0IaaCOCamaaBaaaleaacaWGZb aabeaakiaacMcacqGHxdaTcaGGBbGaaCODamaaBaaaleaacaWGYbaa beaakiabgUcaRiabes7aKjaadAhacaWHJbGaeyOeI0IaaiikaiaahA hadaWgaaWcbaGaam4CaaqabaGccqGHsislcqaH0oazcaWG2bGaaC4y amaalaaabaGaamyBamaaBaaaleaacaWGYbaabeaaaOqaaiaad2gada WgaaWcbaGaam4CaaqabaaaaOGaaiykaiaac2facqGHRaWkcaWGTbWa aSbaaSqaaiaadkhaaeqaaOGaamiBamaaCaaaleqabaGaaGOmaaaaki aahM8acaGGNaaaaa@5F98@  

(2.17)

while the initial angular momentum is:

L= M r ( r r r s )×[ v r v s )]+ m r l 2 ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahYeacqGH9a qpcaWGnbWaaSbaaSqaaiaadkhaaeqaaOGaaiikaiaahkhadaWgaaWc baGaamOCaaqabaGccqGHsislcaWHYbWaaSbaaSqaaiaadohaaeqaaO GaaiykaiabgEna0kaacUfacaWH2bWaaSbaaSqaaiaadkhaaeqaaOGa eyOeI0IaaCODamaaBaaaleaacaWGZbaabeaakiaacMcacaGGDbGaey 4kaSIaamyBamaaBaaaleaacaWGYbaabeaakiaadYgadaahaaWcbeqa aiaaikdaaaGccaWHjpaaaa@5060@  

(2.18)

To compute the final rotor rotational angular momentum, we need to set equations (2.17) and (2.18) equal to each other:

 

M r ( r r r s )×[ v r +δvc( v s δvc m r m s )]+ m r l 2 ω'= M r ( r r r s )×[ v r v s )]+ m r l 2 ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamytam aaBaaaleaacaWGYbaabeaakiaacIcacaWHYbWaaSbaaSqaaiaadkha aeqaaOGaeyOeI0IaaCOCamaaBaaaleaacaWGZbaabeaakiaacMcacq GHxdaTcaGGBbGaaCODamaaBaaaleaacaWGYbaabeaakiabgUcaRiab es7aKjaadAhacaWHJbGaeyOeI0IaaiikaiaahAhadaWgaaWcbaGaam 4CaaqabaGccqGHsislcqaH0oazcaWG2bGaaC4yamaalaaabaGaamyB amaaBaaaleaacaWGYbaabeaaaOqaaiaad2gadaWgaaWcbaGaam4Caa qabaaaaOGaaiykaiaac2facqGHRaWkcaWGTbWaaSbaaSqaaiaadkha aeqaaOGaamiBamaaCaaaleqabaGaaGOmaaaakiaahM8acaGGNaGaey ypa0dabaGaamytamaaBaaaleaacaWGYbaabeaakiaacIcacaWHYbWa aSbaaSqaaiaadkhaaeqaaOGaeyOeI0IaaCOCamaaBaaaleaacaWGZb aabeaakiaacMcacqGHxdaTcaGGBbGaaCODamaaBaaaleaacaWGYbaa beaakiabgkHiTiaahAhadaWgaaWcbaGaam4CaaqabaGccaGGPaGaai yxaiabgUcaRiaad2gadaWgaaWcbaGaamOCaaqabaGccaWGSbWaaWba aSqabeaacaaIYaaaaOGaaCyYdaaaaa@76B9@  

(2.19)

Solving equation (2.19) for the change in ω we obtain:

m r l 2 (ω'-ω)= M r δv( 1+ m r m s )[( r r - r s )×c] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaWgaa WcbaGaamOCaaqabaGccaWGSbWaaWbaaSqabeaacaaIYaaaaOGaaiik aiaahM8acaWHNaGaaCylaiaahM8acaGGPaGaeyypa0JaeyOeI0Iaai ytamaaBaaaleaacaWGYbaabeaakiabes7aKjaadAhadaqadaqaaiaa igdacqGHRaWkdaWcaaqaaiaad2gadaWgaaWcbaGaamOCaaqabaaake aacaWGTbWaaSbaaSqaaiaadohaaeqaaaaaaOGaayjkaiaawMcaaiaa cUfacaGGOaGaaCOCamaaBaaaleaacaWHYbaabeaakiaah2cacaWHYb WaaSbaaSqaaiaadohaaeqaaOGaaCykaiaahEnacaWHJbGaaiyxaaaa @57D2@  

(2.20)

m r l 2 ( δ ω x δ ω z δ ω z )= M r δv( 1+ m r m s )( ( [( r r - r s )×c] x [( r r - r s )×c] y [( r r - r s )×c] z )= m r δv( [( r r - r s )×c] x [( r r - r s )×c] y [( r r - r s )×c] z ) δω= m r l 2 δv( r r - r s )×c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyBam aaBaaaleaacaWGYbaabeaakiaadYgadaahaaWcbeqaaiaaikdaaaGc daqadaqaauaabeqadeaaaeaacqaH0oazcqaHjpWDdaWgaaWcbaGaam iEaaqabaaakeaacqaH0oazcqaHjpWDdaWgaaWcbaGaamOEaaqabaaa keaacqaH0oazcqaHjpWDdaWgaaWcbaGaamOEaaqabaaaaaGccaGLOa GaayzkaaGaeyypa0JaeyOeI0IaamytamaaBaaaleaacaWGYbaabeaa kiabes7aKjaadAhadaqadaqaaiaaigdacqGHRaWkdaWcaaqaaiaad2 gadaWgaaWcbaGaamOCaaqabaaakeaacaWGTbWaaSbaaSqaaiaadoha aeqaaaaaaOGaayjkaiaawMcaamaabmaabaqbaeqabmqaaaqaaiaacI cacaGGBbGaaiikaiaahkhadaWgaaWcbaGaaCOCaaqabaGccaWHTaGa aCOCamaaBaaaleaacaWGZbaabeaakiaahMcacaWHxdGaaC4yaiaac2 fadaWgaaWcbaGaamiEaaqabaaakeaacaGGBbGaaiikaiaahkhadaWg aaWcbaGaaCOCaaqabaGccaWHTaGaaCOCamaaBaaaleaacaWGZbaabe aakiaahMcacaWHxdGaaC4yaiaac2fadaWgaaWcbaGaamyEaaqabaaa keaacaGGBbGaaiikaiaahkhadaWgaaWcbaGaaCOCaaqabaGccaWHTa GaaCOCamaaBaaaleaacaWGZbaabeaakiaahMcacaWHxdGaaC4yaiaa c2fadaWgaaWcbaGaamOEaaqabaaaaaGccaGLOaGaayzkaaGaeyypa0 JaeyOeI0IaamyBamaaBaaaleaacaWGYbaabeaakiabes7aKjaadAha daqadaqaauaabeqadeaaaeaacaGGBbGaaiikaiaahkhadaWgaaWcba GaaCOCaaqabaGccaWHTaGaaCOCamaaBaaaleaacaWGZbaabeaakiaa hMcacaWHxdGaaC4yaiaac2fadaWgaaWcbaGaamiEaaqabaaakeaaca GGBbGaaiikaiaahkhadaWgaaWcbaGaaCOCaaqabaGccaWHTaGaaCOC amaaBaaaleaacaWGZbaabeaakiaahMcacaWHxdGaaC4yaiaac2fada WgaaWcbaGaamyEaaqabaaakeaacaGGBbGaaiikaiaahkhadaWgaaWc baGaaCOCaaqabaGccaWHTaGaaCOCamaaBaaaleaacaWGZbaabeaaki aahMcacaWHxdGaaC4yaiaac2fadaWgaaWcbaGaamOEaaqabaaaaaGc caGLOaGaayzkaaaabaGaeqiTdqMaaCyYdiabg2da9iabgkHiTmaala aabaGaamyBamaaBaaaleaacaWGYbaabeaaaOqaaiaadYgadaahaaWc beqaaiaaikdaaaaaaOGaeqiTdqMaamODaiaacIcacaWHYbWaaSbaaS qaaiaahkhaaeqaaOGaaCylaiaahkhadaWgaaWcbaGaam4CaaqabaGc caWHPaGaaC41aiaahogaaaaa@BC60@  

(2.21)

 

With some vector algebra we can rewrite the right hand side of equation (2.21) in terms of ρ, the vector that points from the rotor axis to the center of its end sphere:

ρ= r r - r s +( b r + b s )c ( r r - r s )×c=ρ×c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaaCyWdi aah2dacaWHYbWaaSbaaSqaaiaahkhaaeqaaOGaaCylaiaahkhadaWg aaWcbaGaaC4CaaqabaGccqGHRaWkcaGGOaGaaiOyamaaBaaaleaaca WGYbaabeaakiabgUcaRiaadkgadaWgaaWcbaGaam4CaaqabaGccaGG PaGaaC4yaaqaaiaacIcacaWHYbWaaSbaaSqaaiaahkhaaeqaaOGaaC ylaiaahkhadaWgaaWcbaGaaC4CaaqabaGccaGGPaGaey41aqRaaC4y aiabg2da9iaahg8acaWHxdGaaC4yaaaaaa@534F@  

(2.22)

which guarantees that the condition for constancy of spin angular momentum will exist:

δωρ= m r l 2 δv[( r r - r s )×c]ρ= m r l 2 δv(ρ×c)ρ=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaahM 8acqGHIaYTcqaHbpGCcqGH9aqpcqGHsisldaWcaaqaaiaad2gadaWg aaWcbaGaamOCaaqabaaakeaacaWGSbWaaWbaaSqabeaacaaIYaaaaa aakiabes7aKjaadAhacaGGBbGaaiikaiaahkhadaWgaaWcbaGaaCOC aaqabaGccaWHTaGaaCOCamaaBaaaleaacaWGZbaabeaakiaahMcaca WHxdGaaC4yaiaac2facqGHIaYTcaWHbpGaeyypa0JaeyOeI0YaaSaa aeaacaWGTbWaaSbaaSqaaiaadkhaaeqaaaGcbaGaamiBamaaCaaale qabaGaaGOmaaaaaaGccqaH0oazcaWG2bGaaiikaiaahg8acaWHxdGa aC4yaiaahMcacqGHIaYTcaWHbpGaeyypa0JaaGimaaaa@6446@  

(2.23)

The conservation of energy equation dictates that the following equation must be true:

m r ( v r +δvc)( v r +δvc)+ m r l 2 (ω+δω)(ω+δω)+ m s ( v s m r m s δvc )( v s m r m s δvc )= m r v r 2 + m r l 2 ω 2 + m s v s 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyBam aaBaaaleaacaWGYbaabeaakiaacIcacaWH2bWaaSbaaSqaaiaadkha aeqaaOGaey4kaSIaeqiTdqMaamODaiaahogacaGGPaGaeyOiGCRaai ikaiaahAhadaWgaaWcbaGaamOCaaqabaGccqGHRaWkcqaH0oazcaWG 2bGaaC4yaiaacMcacqGHRaWkcaGGTbWaaSbaaSqaaiaadkhaaeqaaO GaamiBamaaCaaaleqabaGaaGOmaaaakiaacIcacaWHjpGaaC4kaiaa hs7acaWHjpGaaiykaiabgkci3kaacIcacaWHjpGaaC4kaiaahs7aca WHjpGaaiykaiabgUcaRiaad2gadaWgaaWcbaGaam4CaaqabaGcdaqa daqaaiaahAhadaWgaaWcbaGaam4CaaqabaGccqGHsisldaWcaaqaai aad2gadaWgaaWcbaGaamOCaaqabaaakeaacaWGTbWaaSbaaSqaaiaa dohaaeqaaaaakiabes7aKjaadAhacaWHJbaacaGLOaGaayzkaaGaey OiGC7aaeWaaeaacaWH2bWaaSbaaSqaaiaadohaaeqaaOGaeyOeI0Ya aSaaaeaacaWGTbWaaSbaaSqaaiaadkhaaeqaaaGcbaGaamyBamaaBa aaleaacaWGZbaabeaaaaGccqaH0oazcaWG2bGaaC4yaaGaayjkaiaa wMcaaiabg2da9aqaaiaad2gadaWgaaWcbaGaamOCaaqabaGccaWG2b Waa0baaSqaaiaadkhaaeaacaaIYaaaaOGaey4kaSIaamyBamaaBaaa leaacaWGYbaabeaakiaadYgadaahaaWcbeqaaiaaikdaaaGccqaHjp WDdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWGTbWaaSbaaSqaaiaa dohaaeqaaOGaamODamaaDaaaleaacaWGZbaabaGaaGOmaaaaaaaa@8CE3@              (2.24)

m r {[2( v r c)2( v s c)]δv+δ v 2 (1+ ( m r m s ) 2 )}+ m r l 2 [(2ωδω+δ ω 2 )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaWgaa WcbaGaamOCaaqabaGccaGG7bGaai4waiaaikdacaGGOaGaaCODamaa BaaaleaacaWGYbaabeaakiabgkci3kaahogacaGGPaGaeyOeI0IaaG OmaiaacIcacaWH2bWaaSbaaSqaaiaadohaaeqaaOGaeyOiGCRaaC4y aiaacMcacaGGDbGaeqiTdqMaamODaiabgUcaRiabes7aKjaadAhada ahaaWcbeqaaiaaikdaaaGccaGGOaGaaGymaiabgUcaRmaabmaabaWa aSaaaeaacaWGTbWaaSbaaSqaaiaadkhaaeqaaaGcbaGaamyBamaaBa aaleaacaWGZbaabeaaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaa ikdaaaGccaGGPaGaaiyFaiabgUcaRiaac2gadaWgaaWcbaGaamOCaa qabaGccaWGSbWaaWbaaSqabeaacaaIYaaaaOGaai4waiaacIcacaaI YaGaaCyYdiabgkci3kaahs7acaWHjpGaey4kaSIaaCiTdiaahM8ada ahaaWcbeqaaiaaikdaaaGccaGGPaGaeyypa0JaaGimaaaa@6E63@  

(2.25)

m r {[2( v r c)2( v d c)]δv+δ v 2 (1+ ( m r m s ) 2 )}+ m r l 2 [(2ω [( r r - r s )×c] l δv+ ( [( r r - r s )×c] l δv ) 2 )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaWgaa WcbaGaamOCaaqabaGccaGG7bGaai4waiaaikdacaGGOaGaaCODamaa BaaaleaacaWGYbaabeaakiabgkci3kaahogacaGGPaGaeyOeI0IaaG OmaiaacIcacaWH2bWaaSbaaSqaaiaadsgaaeqaaOGaeyOiGCRaaC4y aiaacMcacaGGDbGaeqiTdqMaamODaiabgUcaRiabes7aKjaadAhada ahaaWcbeqaaiaaikdaaaGccaGGOaGaaGymaiabgUcaRmaabmaabaWa aSaaaeaacaWGTbWaaSbaaSqaaiaadkhaaeqaaaGcbaGaamyBamaaBa aaleaacaWGZbaabeaaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaa ikdaaaGccaGGPaGaaiyFaiabgUcaRiaac2gadaWgaaWcbaGaamOCaa qabaGccaWGSbWaaWbaaSqabeaacaaIYaaaaOGaai4waiaacIcacqGH sislcaaIYaGaaCyYdiabgkci3oaalaaabaGaai4waiaacIcacaWHYb WaaSbaaSqaaiaahkhaaeqaaOGaaCylaiaahkhadaWgaaWcbaGaam4C aaqabaGccaWHPaGaaC41aiaahogacaGGDbaabaGaamiBaaaacqaH0o azcaWG2bGaey4kaSYaaeWaaeaadaWcaaqaaiaacUfacaGGOaGaaCOC amaaBaaaleaacaWHYbaabeaakiaah2cacaWHYbWaaSbaaSqaaiaado haaeqaaOGaaCykaiaahEnacaWHJbGaaiyxaaqaaiaadYgaaaGaeqiT dqMaamODaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiaacM cacqGH9aqpcaaIWaaaaa@87CC@         (2.26)

The result for δv is:

δv=2 ( v r - v s )cω[( r r - r s )×c] 1+ m r m s + [( r r - r s )×c] 2 l 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaadA hacqGH9aqpcqGHsislcaaIYaWaaSaaaeaacaGGOaGaaCODamaaBaaa leaacaWGYbaabeaakiaah2cacaWH2bWaaSbaaSqaaiaadohaaeqaaO Gaaiykaiabgkci3kaahogacqGHsislcaWHjpGaeyOiGCRaai4waiaa cIcacaWHYbWaaSbaaSqaaiaahkhaaeqaaOGaaCylaiaahkhadaWgaa WcbaGaam4CaaqabaGccaWHPaGaaC41aiaahogacaGGDbaabaGaaGym aiabgUcaRmaalaaabaGaamyBamaaBaaaleaacaWGYbaabeaaaOqaai aad2gadaWgaaWcbaGaam4CaaqabaaaaOGaey4kaSYaaSaaaeaacaGG BbGaaiikaiaahkhadaWgaaWcbaGaaCOCaaqabaGccaWHTaGaaCOCam aaBaaaleaacaWGZbaabeaakiaahMcacaWHxdGaaC4yaiaac2fadaah aaWcbeqaaiaaikdaaaaakeaacaWGSbWaaWbaaSqabeaacaaIYaaaaa aaaaaaaa@667F@  

(2.27)

Then δω becomes

δω= δv l 2 ( r r - r s )×c= 2 l 2 { ( v r - v s )cω[( r r - r s )×c] 1+ m r m s + [( r r - r s )×c] 2 l 2 }[( r r - r s )×c] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaahM 8acqGH9aqpcqGHsisldaWcaaqaaiabes7aKjaadAhaaeaacaWGSbWa aWbaaSqabeaacaaIYaaaaaaakiaacIcacaWHYbWaaSbaaSqaaiaahk haaeqaaOGaaCylaiaahkhadaWgaaWcbaGaam4CaaqabaGccaWHPaGa ey41aqRaaC4yaiabg2da9maalaaabaGaaGOmaaqaaiaadYgadaahaa WcbeqaaiaaikdaaaaaaOWaaiWaaeaadaWcaaqaaiaacIcacaWH2bWa aSbaaSqaaiaadkhaaeqaaOGaaCylaiaahAhadaWgaaWcbaGaam4Caa qabaGccaGGPaGaeyOiGCRaaC4yaiabgkHiTiaahM8acqGHIaYTcaGG BbGaaiikaiaahkhadaWgaaWcbaGaaCOCaaqabaGccaWHTaGaaCOCam aaBaaaleaacaWGZbaabeaakiaahMcacaWHxdGaaC4yaiaac2faaeaa caaIXaGaey4kaSYaaSaaaeaacaWGTbWaaSbaaSqaaiaadkhaaeqaaa GcbaGaamyBamaaBaaaleaacaWGZbaabeaaaaGccqGHRaWkdaWcaaqa aiaacUfacaGGOaGaaCOCamaaBaaaleaacaWHYbaabeaakiaah2caca WHYbWaaSbaaSqaaiaadohaaeqaaOGaaCykaiaahEnacaWHJbGaaiyx amaaCaaaleqabaGaaGOmaaaaaOqaaiaadYgadaahaaWcbeqaaiaaik daaaaaaaaaaOGaay5Eaiaaw2haaiaacUfacaGGOaGaaCOCamaaBaaa leaacaWHYbaabeaakiaah2cacaWHYbWaaSbaaSqaaiaadohaaeqaaO GaaCykaiabgEna0kaahogacaGGDbaaaa@853A@  

(2.28)

 

Rotor-Rotor Collisions

 

Figure 3: Illustration of 2 rotors colliding .   The distance between the centers of the rotor end Spheres is 2l and the radius of the end Sphere is br  Thus a collision is computed when the distance between Sphere center and either rotor end center is less than 2brρ is the vector from the axis of the rotor to the center of its colliding end Sphere, and c is a unit vector along the line from the center of rotor 2s end Sphere to the center of the end spheres of rotor 1.  

 

 

            For collisions of two Rotors, the linear momentum associated with their center of mass (CM) velocity must be conserved and the angular momentum, LCM, associated with their linear momentum about their CM and their simple rotational angular momentum, Lω, of the Rotors must be conserved.  Having used the linear and angular momentum conservation equations to compute the new values of Rotors' rotation rates, we must then use the conservation of energy equation to compute the new values of their relative velocity with respect to their previous velocities.  These results will always center around their c unit vector which is the vector between the center of one rotor end sphere and the center of the other rotor end with which it collides.  Recall from the previous 2D Rotor calculations that the angular momentum associated with the linear motion of the 2 Rotor masses is:

 

L CM = M r ( r 1 r 2 )×( v 1 v 2 ) M r = m 1 m 2 m 1 + m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaaCitam aaBaaaleaacaWGdbGaamytaaqabaGccqGH9aqpcaWGnbWaaSbaaSqa aiaadkhaaeqaaOGaaiikaiaahkhadaWgaaWcbaGaaGymaaqabaGccq GHsislcaWHYbWaaSbaaSqaaiaaikdaaeqaaOGaaiykaiabgEna0kaa cIcacaWH2bWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaaCODamaaBa aaleaacaaIYaaabeaakiaacMcaaeaacaWGnbWaaSbaaSqaaiaadkha aeqaaOGaeyypa0ZaaSaaaeaacaWGTbWaaSbaaSqaaiaaigdaaeqaaO GaamyBamaaBaaaleaacaaIYaaabeaaaOqaaiaad2gadaWgaaWcbaGa aGymaaqabaGccqGHRaWkcaWGTbWaaSbaaSqaaiaaikdaaeqaaaaaaa aa@5574@  

(3.1)

 

The final angular momentum after the collision can be written:

L'= M r ( r 1 r 2 )×[ v 1 +δvc( v 2 δvc m 1 m 2 )]+ m 1 l 2 ω 1 '+ m 2 l 2 ω 2 ' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahYeacaGGNa Gaeyypa0JaamytamaaBaaaleaacaWGYbaabeaakiaacIcacaWHYbWa aSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaaCOCamaaBaaaleaacaaIYa aabeaakiaacMcacqGHxdaTcaGGBbGaaCODamaaBaaaleaacaaIXaaa beaakiabgUcaRiabes7aKjaadAhacaWHJbGaeyOeI0IaaiikaiaahA hadaWgaaWcbaGaaGOmaaqabaGccqGHsislcqaH0oazcaWG2bGaaC4y amaalaaabaGaamyBamaaBaaaleaacaaIXaaabeaaaOqaaiaad2gada WgaaWcbaGaaGOmaaqabaaaaOGaaiykaiaac2facqGHRaWkcaWGTbWa aSbaaSqaaiaaigdaaeqaaOGaamiBamaaCaaaleqabaGaaGOmaaaaki aahM8adaWgaaWcbaGaaGymaaqabaGccaGGNaGaey4kaSIaamyBamaa BaaaleaacaaIYaaabeaakiaadYgadaahaaWcbeqaaiaaikdaaaGcca WHjpWaaSbaaSqaaiaaikdaaeqaaOGaai4jaaaa@6681@  

(3.2)

and the initial angular momentum before the collision can be written

L= M r ( r 1 r 2 )×[ v 1 v 2 )]+ m 1 l 2 ω 1 + m 2 l 2 ω 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahYeacqGH9a qpcaWGnbWaaSbaaSqaaiaadkhaaeqaaOGaaiikaiaahkhadaWgaaWc baGaaGymaaqabaGccqGHsislcaWHYbWaaSbaaSqaaiaaikdaaeqaaO GaaiykaiabgEna0kaacUfacaWH2bWaaSbaaSqaaiaaigdaaeqaaOGa eyOeI0IaaCODamaaBaaaleaacaaIYaaabeaakiaacMcacaGGDbGaey 4kaSIaamyBamaaBaaaleaacaaIXaaabeaakiaadYgadaahaaWcbeqa aiaaikdaaaGccaWHjpWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaam yBamaaBaaaleaacaaIYaaabeaakiaadYgadaahaaWcbeqaaiaaikda aaGccaWHjpWaaSbaaSqaaiaaikdaaeqaaaaa@570C@  

(3.3)

We may set equations (3.2) and (3.3) equal getting the following equation:

 

M r [( r 1 r 2 )×c]δv( 1+ m 1 m 2 )+ m 1 l 2 ( ω 1 ' ω 1 )+ m 2 l 2 ( ω 2 ' ω 2 )=0 m 1 [( r 1 r 2 )×c]δv+ m 1 l 2 ( ω 1 ' ω 1 )+ m 2 l 2 ( ω 2 ' ω 2 )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamytam aaBaaaleaacaWGYbaabeaakiaacUfacaGGOaGaaCOCamaaBaaaleaa caaIXaaabeaakiabgkHiTiaahkhadaWgaaWcbaGaaGOmaaqabaGcca GGPaGaey41aqRaaC4yaiaac2facqaH0oazcaWG2bWaaeWaaeaacaaI XaGaey4kaSYaaSaaaeaacaWGTbWaaSbaaSqaaiaaigdaaeqaaaGcba GaamyBamaaBaaaleaacaaIYaaabeaaaaaakiaawIcacaGLPaaacqGH RaWkcaWGTbWaaSbaaSqaaiaaigdaaeqaaOGaamiBamaaCaaaleqaba GaaGOmaaaakiaacIcacaWHjpWaaSbaaSqaaiaaigdaaeqaaOGaai4j aiabgkHiTiaahM8adaWgaaWcbaGaaGymaaqabaGccaGGPaGaey4kaS IaamyBamaaBaaaleaacaaIYaaabeaakiaadYgadaahaaWcbeqaaiaa ikdaaaGccaGGOaGaaCyYdmaaBaaaleaacaaIYaaabeaakiaacEcacq GHsislcaWHjpWaaSbaaSqaaiaaikdaaeqaaOGaaiykaiabg2da9iaa icdaaeaacaGGTbWaaSbaaSqaaiaaigdaaeqaaOGaai4waiaacIcaca WHYbWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaaCOCamaaBaaaleaa caaIYaaabeaakiaacMcacqGHxdaTcaWHJbGaaiyxaiabes7aKjaadA hacqGHRaWkcaWGTbWaaSbaaSqaaiaaigdaaeqaaOGaamiBamaaCaaa leqabaGaaGOmaaaakiaacIcacaWHjpWaaSbaaSqaaiaaigdaaeqaaO Gaai4jaiabgkHiTiaahM8adaWgaaWcbaGaaGymaaqabaGccaGGPaGa ey4kaSIaamyBamaaBaaaleaacaaIYaaabeaakiaadYgadaahaaWcbe qaaiaaikdaaaGccaGGOaGaaCyYdmaaBaaaleaacaaIYaaabeaakiaa cEcacqGHsislcaWHjpWaaSbaaSqaaiaaikdaaeqaaOGaaiykaiabg2 da9iaaicdaaaaa@8FF2@  

(3.4)

First let's rewrite ( r 1 r 2 )×c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcacaWHYb WaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaaCOCamaaBaaaleaacaaI YaaabeaakiaacMcacqGHxdaTcaWHJbaaaa@3F0D@  in terms of ρ1 and ρ2.  Note that the vector expression relating r 1 , r 2 andc MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahkhadaWgaa WcbaGaaCymaaqabaGccaGGSaGaaGPaVlaaykW7caWHYbWaaSbaaSqa aiaahkdaaeqaaOGaaGPaVlaadggacaWGUbGaamizaiaaykW7caWHJb aaaa@444C@  is

r 1 + ρ 1 = r 2 + ρ 2 2 b r c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahkhadaWgaa WcbaGaaCymaaqabaGccaWHRaGaaCyWdmaaBaaaleaacaaIXaaabeaa kiabg2da9iaahkhadaWgaaWcbaGaaCOmaaqabaGccaWHRaGaaCyWdm aaBaaaleaacaaIYaaabeaakiabgkHiTiaaikdacaWGIbWaaSbaaSqa aiaadkhaaeqaaOGaaC4yaaaa@4556@  

(3.5)

Then solving for r 1 r 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahkhadaWgaa WcbaGaaCymaaqabaGccqGHsislcaWHYbWaaSbaaSqaaiaahkdaaeqa aaaa@3AA5@  we have

r 1 r 2 = ρ 2 ρ 1 2 b r c ( r 1 r 2 )×c=( ρ 2 ρ 1 )×c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaaCOCam aaBaaaleaacaWHXaaabeaakiabgkHiTiaahkhadaWgaaWcbaGaaCOm aaqabaGccqGH9aqpcaWHbpWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0 IaaCyWdmaaBaaaleaacaaIXaaabeaakiabgkHiTiaaikdacaWGIbWa aSbaaSqaaiaadkhaaeqaaOGaaC4yaaqaaiaacIcacaWHYbWaaSbaaS qaaiaahgdaaeqaaOGaeyOeI0IaaCOCamaaBaaaleaacaWHYaaabeaa kiaacMcacqGHxdaTcaWHJbGaeyypa0Jaaiikaiaahg8adaWgaaWcba GaaGOmaaqabaGccqGHsislcaWHbpWaaSbaaSqaaiaaigdaaeqaaOGa aiykaiabgEna0kaahogaaaaa@59BB@  

(3.6)

 

so we can rewrite equation (3.4)

m 1 [( ρ 1 - ρ 2 )×c]δv+ m 1 l 2 ( ω 1 ' ω 1 )+ m 2 l 2 ( ω 2 ' ω 2 )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaac2gadaWgaa WcbaGaaGymaaqabaGccaGGBbGaaiikaiaahg8adaWgaaWcbaGaaCym aaqabaGccaWHTaGaaCyWdmaaBaaaleaacaWHYaaabeaakiaacMcacq GHxdaTcaWHJbGaaiyxaiabes7aKjaadAhacqGHRaWkcaWGTbWaaSba aSqaaiaaigdaaeqaaOGaamiBamaaCaaaleqabaGaaGOmaaaakiaacI cacaWHjpWaaSbaaSqaaiaaigdaaeqaaOGaai4jaiabgkHiTiaahM8a daWgaaWcbaGaaGymaaqabaGccaGGPaGaey4kaSIaamyBamaaBaaale aacaaIYaaabeaakiaadYgadaahaaWcbeqaaiaaikdaaaGccaGGOaGa aCyYdmaaBaaaleaacaaIYaaabeaakiaacEcacqGHsislcaWHjpWaaS baaSqaaiaaikdaaeqaaOGaaiykaiabg2da9iaaicdaaaa@5FC9@  

(3.7)

Since the same (unknown) impulse, P, causes both ω1 and ω2 to change, there is a specific relationship between their changes.

Let both torque impulses be described in terms of the unknown value of P

δ τ 1 =P( ρ 1 ×c) δ τ 2 =P( ρ 2 ×c) ω 1 '- ω 1 δ ω 1 = δ τ 1 m 1 l 2 = P( ρ 1 ×c) m 1 l 2 ω 2 '- ω 2 δ ω 2 = δ τ 2 m 2 l 2 = P( ρ 2 ×c) m 2 l 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeqiTdq MaaCiXdmaaBaaaleaacaaIXaaabeaakiabg2da9iaadcfacaGGOaGa aCyWdmaaBaaaleaacaWHXaaabeaakiaahEnacaWHJbGaaiykaaqaai abes7aKjaahs8adaWgaaWcbaGaaGOmaaqabaGccqGH9aqpcqGHsisl caWGqbGaaiikaiaahg8adaWgaaWcbaGaaGOmaaqabaGccaWHxdGaaC 4yaiaacMcaaeaacaWHjpWaaSbaaSqaaiaahgdaaeqaaOGaaC4jaiaa h2cacaWHjpWaaSbaaSqaaiaahgdaaeqaaOGaeyyyIORaeqiTdqMaaC yYdmaaBaaaleaacaaIXaaabeaakiabg2da9maalaaabaGaeqiTdqMa aCiXdmaaBaaaleaacaaIXaaabeaaaOqaaiaad2gadaWgaaWcbaGaaG ymaaqabaGccaWGSbWaaWbaaSqabeaacaaIYaaaaaaakiabg2da9maa laaabaGaamiuaiaacIcacaWHbpWaaSbaaSqaaiaahgdaaeqaaOGaaC 41aiaahogacaGGPaaabaGaamyBamaaBaaaleaacaaIXaaabeaakiaa dYgadaahaaWcbeqaaiaaikdaaaaaaaGcbaGaaCyYdmaaBaaaleaaca WHYaaabeaakiaahEcacaWHTaGaaCyYdmaaBaaaleaacaWHYaaabeaa kiabggMi6kabes7aKjaahM8adaWgaaWcbaGaaGOmaaqabaGccqGH9a qpdaWcaaqaaiabes7aKjaahs8adaWgaaWcbaGaaGOmaaqabaaakeaa caWGTbWaaSbaaSqaaiaaikdaaeqaaOGaamiBamaaCaaaleqabaGaaG OmaaaaaaGccqGH9aqpcqGHsisldaWcaaqaaiaadcfacaGGOaGaaCyW dmaaBaaaleaacaaIYaaabeaakiaahEnacaWHJbGaaiykaaqaaiaad2 gadaWgaaWcbaGaaGOmaaqabaGccaWGSbWaaWbaaSqabeaacaaIYaaa aaaaaaaa@8F0B@  

(3.8)

 

Dot multiply both sides of the equation for δ ω 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaahM 8adaWgaaWcbaGaaGymaaqabaaaaa@39CC@  by ρ 1 ×c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahg8adaWgaa WcbaGaaCymaaqabaGccaWHxdGaaC4yaaaa@3A74@  and we have:

( ρ 1 ×c)δ ω 1 = P( ρ 1 ×c)( ρ 1 ×c) m 1 l 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcacaWHbp WaaSbaaSqaaiaahgdaaeqaaOGaaC41aiaahogacaGGPaGaeyOiGCRa eqiTdqMaaCyYdmaaBaaaleaacaaIXaaabeaakiabg2da9maalaaaba GaamiuaiaacIcacaWHbpWaaSbaaSqaaiaahgdaaeqaaOGaaC41aiaa hogacaGGPaGaeyOiGCRaaiikaiaahg8adaWgaaWcbaGaaCymaaqaba GccaWHxdGaaC4yaiaacMcaaeaacaWGTbWaaSbaaSqaaiaaigdaaeqa aOGaamiBamaaCaaaleqabaGaaGOmaaaaaaaaaa@542E@  

(3.9)

Then the solution for P is gotten by solving equation (3.9)

P= m 1 l 2 ( ρ 1 ×c)δω ( ρ 1 ×c)( ρ 1 ×c) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfacqGH9a qpdaWcaaqaaiaad2gadaWgaaWcbaGaaGymaaqabaGccaWGSbWaaWba aSqabeaacaaIYaaaaOGaaiikaiaahg8adaWgaaWcbaGaaCymaaqaba GccaWHxdGaaC4yaiaacMcacqGHIaYTcqaH0oazcaWHjpaabaGaaiik aiaahg8adaWgaaWcbaGaaCymaaqabaGccaWHxdGaaC4yaiaacMcacq GHIaYTcaGGOaGaaCyWdmaaBaaaleaacaWHXaaabeaakiaahEnacaWH JbGaaiykaaaaaaa@5347@  

(3.10)

And then we can use our result for P in the δω2 equation:

δ ω 2 =P ( ρ 2 ×c) m 2 l 2 = m 1 ( ρ 2 ×c)( ρ 1 ×c)δω m 2 ( ρ 1 ×c)( ρ 1 ×c) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaahM 8adaWgaaWcbaGaaGOmaaqabaGccqGH9aqpcqGHsislcaWGqbWaaSaa aeaacaGGOaGaaCyWdmaaBaaaleaacaaIYaaabeaakiaahEnacaWHJb Gaaiykaaqaaiaad2gadaWgaaWcbaGaaGOmaaqabaGccaWGSbWaaWba aSqabeaacaaIYaaaaaaakiabg2da9iabgkHiTmaalaaabaGaamyBam aaBaaaleaacaaIXaaabeaakiaacIcacaWHbpWaaSbaaSqaaiaaikda aeqaaOGaaC41aiaahogacaGGPaGaeyOiGCRaaiikaiaahg8adaWgaa WcbaGaaGymaaqabaGccaWHxdGaaC4yaiaacMcacqGHIaYTcqaH0oaz caWHjpaabaGaamyBamaaBaaaleaacaaIYaaabeaakiaacIcacaWHbp WaaSbaaSqaaiaaigdaaeqaaOGaaC41aiaahogacaGGPaGaeyOiGCRa aiikaiaahg8adaWgaaWcbaGaaGymaaqabaGccaWHxdGaaC4yaiaacM caaaaaaa@6B3B@  

(3.11)

We may rewrite equation (3.11) as a matrix multiplied by δω.  First, for brevity, rename some of the quantities in equation (3.11):

                                                                       

a 1 = ρ 1 ×c a 2 = m 1 m 2 ρ 2 ×c ( ρ 1 ×c)( ρ 1 ×c) sothat: δ ω 2 = a 2 ( a 1 δω) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaaCyyam aaBaaaleaacaaIXaaabeaakiabg2da9iaahg8adaWgaaWcbaGaaCym aaqabaGccqGHxdaTcaWHJbaabaGaaCyyamaaBaaaleaacaaIYaaabe aakiabg2da9maalaaabaGaamyBamaaBaaaleaacaaIXaaabeaaaOqa aiaad2gadaWgaaWcbaGaaGOmaaqabaaaaOWaaSaaaeaacaWHbpWaaS baaSqaaiaaikdaaeqaaOGaey41aqRaaC4yaaqaaiaacIcacaWHbpWa aSbaaSqaaiaahgdaaeqaaOGaey41aqRaaC4yaiaacMcacqGHIaYTca GGOaGaaCyWdmaaBaaaleaacaWHXaaabeaakiabgEna0kaahogacaGG PaaaaaqaaiaadohacaWGVbGaaGPaVlaadshacaWGObGaamyyaiaads hacaGG6aaabaGaeqiTdqMaaCyYdmaaBaaaleaacaaIYaaabeaakiab g2da9iabgkHiTiaahggadaWgaaWcbaGaaCOmaaqabaGccaWHOaGaaC yyamaaBaaaleaacaWHXaaabeaakiaahkcicaWH0oGaaCyYdiaacMca aaaa@6F23@  

(3.12)

 

                                                                       

Now writing out the components of v2 and v 1 δω MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahAhadaWgaa WcbaGaaCymaaqabaGccaWHIaIaaCiTdiaahM8aaaa@3B3B@  we find the following matrix:

δ ω 2 = a 2 ( a 1 δω)=( a 2x a 1x a 2x a 1y a 2x a 1z a 2y a 1x a 2y v 1y a 2y a 1z a 2z a 1x a 2z v 1y a 2z a 1z )( δ ω x δ ω y δ ω z ) M 21 δω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahs7acaWHjp WaaSbaaSqaaiaahkdaaeqaaOGaaCypaiabgkHiTiaahggadaWgaaWc baGaaCOmaaqabaGccaWHOaGaaCyyamaaBaaaleaacaWHXaaabeaaki aahkcicaWH0oGaaCyYdiaahMcacqGH9aqpcqGHsisldaqadaqaauaa beqadmaaaeaacaWGHbWaaSbaaSqaaiaaikdacaWG4baabeaakiaadg gadaWgaaWcbaGaaGymaiaadIhaaeqaaaGcbaGaamyyamaaBaaaleaa caaIYaGaamiEaaqabaGccaWGHbWaaSbaaSqaaiaaigdacaWG5baabe aaaOqaaiaadggadaWgaaWcbaGaaGOmaiaadIhaaeqaaOGaamyyamaa BaaaleaacaaIXaGaamOEaaqabaaakeaacaWGHbWaaSbaaSqaaiaaik dacaWG5baabeaakiaadggadaWgaaWcbaGaaGymaiaadIhaaeqaaaGc baGaamyyamaaBaaaleaacaaIYaGaamyEaaqabaGccaWG2bWaaSbaaS qaaiaaigdacaWG5baabeaaaOqaaiaadggadaWgaaWcbaGaaGOmaiaa dMhaaeqaaOGaamyyamaaBaaaleaacaaIXaGaamOEaaqabaaakeaaca WGHbWaaSbaaSqaaiaaikdacaWG6baabeaakiaadggadaWgaaWcbaGa aGymaiaadIhaaeqaaaGcbaGaamyyamaaBaaaleaacaaIYaGaamOEaa qabaGccaWG2bWaaSbaaSqaaiaaigdacaWG5baabeaaaOqaaiaadgga daWgaaWcbaGaaGOmaiaadQhaaeqaaOGaamyyamaaBaaaleaacaaIXa GaamOEaaqabaaaaaGccaGLOaGaayzkaaWaaeWaaeaafaqabeWabaaa baGaeqiTdqMaeqyYdC3aaSbaaSqaaiaadIhaaeqaaaGcbaGaeqiTdq MaeqyYdC3aaSbaaSqaaiaadMhaaeqaaaGcbaGaeqiTdqMaeqyYdC3a aSbaaSqaaiaadQhaaeqaaaaaaOGaayjkaiaawMcaaiabggMi6kabgk HiTiaah2eadaWgaaWcbaGaaCOmaiaahgdaaeqaaOGaaCiTdiaahM8a aaa@91B2@  

(3.13)

where M21 is the dyadic tensor a2a1.

Then equation (3.7) can be solved as:

m 1 l 2 δω(1 M 21 )= m 1 [( ρ 1 - ρ 2 )×c]δv MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaWgaa WcbaGaaGymaaqabaGccaWGSbWaaWbaaSqabeaacaaIYaaaaOGaeqiT dqMaaCyYdiaacIcacaaIXaGaeyOeI0IaaCytamaaBaaaleaacaaIYa GaaGymaaqabaGccaGGPaGaeyypa0JaeyOeI0IaamyBamaaBaaaleaa caaIXaaabeaakiaacUfacaGGOaGaaCyWdmaaBaaaleaacaWHXaaabe aakiaah2cacaWHbpWaaSbaaSqaaiaahkdaaeqaaOGaaiykaiabgEna 0kaahogacaGGDbGaeqiTdqMaamODaaaa@53F3@  

(3.14)

so that the solution for δω is:

δωδ ω 1 = (1 M 21 ) 1 [( ρ 1 - ρ 2 )×c] δv l 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaahM 8acqGHHjIUcqaH0oazcaWHjpWaaSbaaSqaaiaaigdaaeqaaOGaeyyp a0JaeyOeI0IaaiikaiaahgdacqGHsislcaWHnbWaaSbaaSqaaiaaik dacaaIXaaabeaakiaacMcadaahaaWcbeqaaiabgkHiTiaaigdaaaGc caGGBbGaaiikaiaahg8adaWgaaWcbaGaaCymaaqabaGccaWHTaGaaC yWdmaaBaaaleaacaaIYaaabeaakiaacMcacqGHxdaTcaWHJbGaaiyx amaalaaabaGaeqiTdqMaamODaaqaaiaadYgadaahaaWcbeqaaiaaik daaaaaaaaa@57C6@  

(3.15)

where the bold 1 in equation (3.15) denotes the unit matrix.

Now we can write the conservation of energy equation for the two rotors

m 1 ( v 1 +δv) 2 + m 2 ( v 2 m 2 m 2 δv)+ m 1 l 2 ( ω 1 +δω) 2 + m 1 l 2 ( ω 2 + m 2 m 1 M 21 δω) 2 = m 1 v 1 2 + m 2 v 2 2 + m 1 l 2 ω 1 2 + m 1 l 2 ω 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyBam aaBaaaleaacaaIXaaabeaakiaacIcacaWH2bWaaSbaaSqaaiaahgda aeqaaOGaaC4kaiaahs7acaWH2bGaaiykamaaCaaaleqabaGaaGOmaa aakiabgUcaRiaad2gadaWgaaWcbaGaaGOmaaqabaGccaGGOaGaaCOD amaaBaaaleaacaaIYaaabeaakiabgkHiTmaalaaabaGaamyBamaaBa aaleaacaaIYaaabeaaaOqaaiaad2gadaWgaaWcbaGaaGOmaaqabaaa aOGaeqiTdqMaaCODaiaacMcacqGHRaWkcaWGTbWaaSbaaSqaaiaaig daaeqaaOGaamiBamaaCaaaleqabaGaaGOmaaaakiaacIcacaWHjpWa aSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeqiTdqMaaCyYdiaacMcada ahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWGTbWaaSbaaSqaaiaaigda aeqaaOGaamiBamaaCaaaleqabaGaaGOmaaaakiaacIcacaWHjpWaaS baaSqaaiaaikdaaeqaaOGaey4kaSYaaSaaaeaacaWGTbWaaSbaaSqa aiaaikdaaeqaaaGcbaGaamyBamaaBaaaleaacaaIXaaabeaaaaGcca WHnbWaaSbaaSqaaiaaikdacaaIXaaabeaakiabes7aKjaahM8acaGG PaWaaWbaaSqabeaacaaIYaaaaOGaeyypa0dabaGaamyBamaaBaaale aacaaIXaaabeaakiaahAhadaWgaaWcbaGaaGymaaqabaGcdaahaaWc beqaaiaaikdaaaGccqGHRaWkcaWGTbWaaSbaaSqaaiaaikdaaeqaaO GaaCODamaaBaaaleaacaaIYaaabeaakmaaCaaaleqabaGaaGOmaaaa kiabgUcaRiaad2gadaWgaaWcbaGaaGymaaqabaGccaWGSbWaaWbaaS qabeaacaaIYaaaaOGaaCyYdmaaBaaaleaacaaIXaaabeaakmaaCaaa leqabaGaaGOmaaaakiabgUcaRiaad2gadaWgaaWcbaGaaGymaaqaba GccaWGSbWaaWbaaSqabeaacaaIYaaaaOGaaCyYdmaaBaaaleaacaaI YaaabeaakmaaCaaaleqabaGaaGOmaaaaaaaa@8836@  

(3.16)

Simplify notation for equation (3.15)

δω= (1 M 21 ) 1 [( ρ 1 - ρ 2 )×c] δv l 2 b δv l 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaahM 8acqGH9aqpcqGHsislcaGGOaGaaCymaiabgkHiTiaah2eadaWgaaWc baGaaGOmaiaaigdaaeqaaOGaaiykamaaCaaaleqabaGaeyOeI0IaaG ymaaaakiaacUfacaGGOaGaaCyWdmaaBaaaleaacaWHXaaabeaakiaa h2cacaWHbpWaaSbaaSqaaiaaikdaaeqaaOGaaiykaiabgEna0kaaho gacaGGDbWaaSaaaeaacqaH0oazcaWG2baabaGaamiBamaaCaaaleqa baGaaGOmaaaaaaGccqGHHjIUcqGHsislcaWHIbWaaSaaaeaacqaH0o azcaWG2baabaGaamiBamaaCaaaleqabaGaaGOmaaaaaaaaaa@5A47@  

(3.17)

where

b= (1 M 21 ) 1 [( ρ 1 - ρ 2 )×c] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahkgacqGH9a qpcaGGOaGaaCymaiabgkHiTiaah2eadaWgaaWcbaGaaGOmaiaaigda aeqaaOGaaiykamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaacUfaca GGOaGaaCyWdmaaBaaaleaacaWHXaaabeaakiaah2cacaWHbpWaaSba aSqaaiaaikdaaeqaaOGaaiykaiabgEna0kaahogacaGGDbaaaa@4A8C@  

(3.18)

where a is a vector.  Then solving equation (3.16) we obtain:

δv=2 m 1 ( v 2 - v 1 )c+ m 1 b ω 1 m 2 ( M 21 b) ω 2 m 1 (1+ b 2 l 2 )+ m 1 2 m 2 + m 2 ( M 21 b) 2 1 l 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaadA hacqGH9aqpcaaIYaWaaSaaaeaacaWGTbWaaSbaaSqaaiaaigdaaeqa aOGaaiikaiaahAhadaWgaaWcbaGaaCOmaaqabaGccaWHTaGaaCODam aaBaaaleaacaaIXaaabeaakiaacMcacqGHIaYTcaWHJbGaey4kaSIa amyBamaaBaaaleaacaaIXaaabeaakiaahkgacqGHIaYTcaWHjpWaaS baaSqaaiaaigdaaeqaaOGaeyOeI0IaamyBamaaBaaaleaacaaIYaaa beaakiaacIcacaWHnbWaaSbaaSqaaiaaikdacaaIXaaabeaakiaahk gacaGGPaGaeyOiGCRaaCyYdmaaBaaaleaacaaIYaaabeaaaOqaaiaa d2gadaWgaaWcbaGaaGymaaqabaGccaGGOaGaaGymaiabgUcaRmaala aabaGaamOyamaaCaaaleqabaGaaGOmaaaaaOqaaiaadYgadaahaaWc beqaaiaaikdaaaaaaOGaaiykaiabgUcaRmaalaaabaGaamyBamaaDa aaleaacaaIXaaabaGaaGOmaaaaaOqaaiaad2gadaWgaaWcbaGaaGOm aaqabaaaaOGaey4kaSIaamyBamaaBaaaleaacaaIYaaabeaakiaacI cacaWHnbWaaSbaaSqaaiaaikdacaaIXaaabeaakiaahkgacaGGPaWa aWbaaSqabeaacaaIYaaaaOWaaSaaaeaacaaIXaaabaGaamiBamaaCa aaleqabaGaaGOmaaaaaaaaaaaa@70C1@  

(3.19)

Recalling equation (3.15) for δω we have:

δω= (1 M 21 ) 1 [( ρ 1 - ρ 2 )×c] δv l 2 =b δv l 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaahM 8acqGH9aqpcqGHsislcaGGOaGaaGymaiabgkHiTiaah2eadaWgaaWc baGaaGOmaiaaigdaaeqaaOGaaiykamaaCaaaleqabaGaeyOeI0IaaG ymaaaakiaacUfacaGGOaGaaCyWdmaaBaaaleaacaWHXaaabeaakiaa h2cacaWHbpWaaSbaaSqaaiaaikdaaeqaaOGaaiykaiabgEna0kaaho gacaGGDbWaaSaaaeaacqaH0oazcaWG2baabaGaamiBamaaCaaaleqa baGaaGOmaaaaaaGccqGH9aqpcqGHsislcaWHIbWaaSaaaeaacqaH0o azcaWG2baabaGaamiBamaaCaaaleqabaGaaGOmaaaaaaaaaa@5985@  

(3.20)

4. Relation Between Rotor Angular Orientation and its Spin Axis Vector, ω, in Torque Free Rotation

            Having obtained the value of ω consistent with the value of ρ, we need to decide how to rotate the rotor.  The rotor spins about the ω vector at the rate ω.  In order to display this spin motion we need to use a matrix that rotates points about an axis parallel to ω in space.   The Rodrigues formula http://en.wikipedia.org/wiki/Rodrigues%27_rotation_formula is such a matrix and for our case of ρ and ω is written:

ρ'=ρcosϕ+( ω ^ ×ρ)sinϕ+ ω ^ ( ω ^ ρ)(1cosϕ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahg8acaGGNa Gaeyypa0JaaCyWdiaacogacaGGVbGaai4Caiabew9aMjabgUcaRiaa cIcaceWHjpGbaKaacaWHxdGaaCyWdiaacMcaciGGZbGaaiyAaiaac6 gacqaHvpGzcqGHRaWkceWHjpGbaKaacaGGOaGabCyYdyaajaGaeyOi GCRaaCyWdiaacMcacaGGOaGaaGymaiabgkHiTiGacogacaGGVbGaai 4Caiabew9aMjaacMcaaaa@592F@  

(4.1)

where ω with the carat on top denotes a unit vector in the ω direction and ρ' is the new vector from the axis to the Rotor end sphere and ϕ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGGaaKqzagaeaa aaaaaaa8qacqWFvpGzaaa@38C8@  is the rotation angle (usually small) about the axis.