Special Relativity with Constant Acceleration

 

The differential equation that must be solved when we have linear acceleration is:

d(γv)=adt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgacaGGOa Gaeq4SdCMaamODaiaacMcacqGH9aqpcaWGHbGaamizaiaadshaaaa@3E9D@  

(1.1)

where t is earth time and v is relative speed.

                                                                       

( v dγ dv +γ )dv=adt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam ODamaalaaabaGaamizaiabeo7aNbqaaiaadsgacaWG2baaaiabgUca Riabeo7aNbGaayjkaiaawMcaaiaadsgacaWG2bGaeyypa0Jaamyyai aadsgacaWG0baaaa@452E@  

(1.2)

 

v dγ dv = v 2 c 2 ( 1 v 2 c 2 ) 3 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAhadaWcaa qaaiaadsgacqaHZoWzaeaacaWGKbGaamODaaaacqGH9aqpdaWcaaqa aiaadAhadaahaaWcbeqaaiaaikdaaaaakeaacaWGJbWaaWbaaSqabe aacaaIYaaaaOWaaeWaaeaacaaIXaGaeyOeI0YaaSaaaeaacaWG2bWa aWbaaSqabeaacaaIYaaaaaGcbaGaam4yamaaCaaaleqabaGaaGOmaa aaaaaakiaawIcacaGLPaaadaahaaWcbeqaamaalaaabaGaaG4maaqa aiaaikdaaaaaaaaaaaa@4909@  

(1.3)

                                                                       

( v 2 c 2 ( 1 v 2 c 2 ) 3 2 + 1 1 v 2 c 2 )dv=adt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaWaaS aaaeaacaWG2bWaaWbaaSqabeaacaaIYaaaaaGcbaGaam4yamaaCaaa leqabaGaaGOmaaaakmaabmaabaGaaGymaiabgkHiTmaalaaabaGaam ODamaaCaaaleqabaGaaGOmaaaaaOqaaiaadogadaahaaWcbeqaaiaa ikdaaaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaadaWcaaqaaiaaio daaeaacaaIYaaaaaaaaaGccqGHRaWkdaWcaaqaaiaaigdaaeaadaGc aaqaaiaaigdacqGHsisldaWcaaqaaiaadAhadaahaaWcbeqaaiaaik daaaaakeaacaWGJbWaaWbaaSqabeaacaaIYaaaaaaaaeqaaaaaaOGa ayjkaiaawMcaaiaadsgacaWG2bGaeyypa0JaamyyaiaadsgacaWG0b aaaa@5107@  

(1.4)

Integrating with respect to v letting β= v c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aIjabg2 da9maalaaabaGaamODaaqaaiaadogaaaaaaa@3A86@  

 

0 β v 2 c 2 ( 1 v 2 c 2 ) 3 2 dv = cβ 1 β 2 sin 1 β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaapehabaWaaS aaaeaacaWG2bWaaWbaaSqabeaacaaIYaaaaaGcbaGaam4yamaaCaaa leqabaGaaGOmaaaakmaabmaabaGaaGymaiabgkHiTmaalaaabaGaam ODamaaCaaaleqabaGaaGOmaaaaaOqaaiaadogadaahaaWcbeqaaiaa ikdaaaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaadaWcaaqaaiaaio daaeaacaaIYaaaaaaaaaGccaWGKbGaamODaaWcbaGaaGimaaqaaiab ek7aIbqdcqGHRiI8aOGaeyypa0ZaaSaaaeaacaWGJbGaeqOSdigaba WaaOaaaeaacaaIXaGaeyOeI0IaeqOSdi2aaWbaaSqabeaacaaIYaaa aaqabaaaaOGaeyOeI0Iaci4CaiaacMgacaGGUbWaaWbaaSqabeaacq GHsislcaaIXaaaaOGaeqOSdigaaa@5870@  

(1.5)

                                                                       

and

0 β dv 1 ( v c ) 2 = sin 1 β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaapehabaWaaS aaaeaacaWGKbGaamODaaqaamaakaaabaGaaGymaiabgkHiTmaabmaa baWaaSaaaeaacaWG2baabaGaam4yaaaaaiaawIcacaGLPaaadaahaa WcbeqaaiaaikdaaaaabeaaaaGccqGH9aqpciGGZbGaaiyAaiaac6ga daahaaWcbeqaaiabgkHiTiaaigdaaaGccqaHYoGyaSqaaiaaicdaae aacqaHYoGya0Gaey4kIipaaaa@4A28@  

(1.6)

resulting in the expression:

cβ 1 β 2 =at MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam 4yaiabek7aIbqaamaakaaabaGaaGymaiabgkHiTiabek7aInaaCaaa leqabaGaaGOmaaaaaeqaaaaakiabg2da9iaadggacaWG0baaaa@3FB5@  

(1.7)

c 2 β 2 = (at) 2 (1 β 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadogadaahaa WcbeqaaiaaikdaaaGccqaHYoGydaahaaWcbeqaaiaaikdaaaGccqGH 9aqpcaGGOaGaamyyaiaadshacaGGPaWaaWbaaSqabeaacaaIYaaaaO GaaiikaiaaigdacqGHsislcqaHYoGydaahaaWcbeqaaiaaikdaaaGc caGGPaaaaa@4520@  

(1.8)

Solving for β we get:

β= at c 1 1+ ( at c ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aIjabg2 da9maalaaabaGaamyyaiaadshaaeaacaWGJbaaamaalaaabaGaaGym aaqaamaakaaabaGaaGymaiabgUcaRmaabmaabaWaaSaaaeaacaWGHb GaamiDaaqaaiaadogaaaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaI Yaaaaaqabaaaaaaa@432A@  

(1.9)

and

γ= 1 1+ ( at c ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo7aNjabg2 da9maalaaabaGaaGymaaqaamaakaaabaGaaGymaiabgUcaRmaabmaa baWaaSaaaeaacaWGHbGaamiDaaqaaiaadogaaaaacaGLOaGaayzkaa WaaWbaaSqabeaacaaIYaaaaaqabaaaaaaa@4059@  

(1.10)

The rocket time, T, is obtained by integrating γ 

T= 0 t f dt 1+ ( at c ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfacqGH9a qpdaWdXbqaamaalaaabaGaamizaiaadshaaeaadaGcaaqaaiaaigda cqGHRaWkdaqadaqaamaalaaabaGaamyyaiaadshaaeaacaWGJbaaaa GaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaeqaaaaaaeaacaaI WaaabaGaamiDamaaBaaameaacaWGMbaabeaaa0Gaey4kIipaaaa@45DB@  

(1.11)

T= c a sinh 1 a t f c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfacqGH9a qpdaWcaaqaaiaadogaaeaacaWGHbaaaiGacohacaGGPbGaaiOBaiaa cIgadaahaaWcbeqaaiabgkHiTiaaigdaaaGcdaWcaaqaaiaadggaca WG0bWaaSbaaSqaaiaadAgaaeqaaaGcbaGaam4yaaaaaaa@4343@  

(1.12)

and solving for tf we get:

t f = c a sinh aT c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshadaWgaa WcbaGaamOzaaqabaGccqGH9aqpdaWcaaqaaiaadogaaeaacaWGHbaa aiGacohacaGGPbGaaiOBaiaacIgadaWcaaqaaiaadggacaWGubaaba Gaam4yaaaaaaa@4164@  

(1.13)

                                                                       

The distance as a function of tf is:

d f = 0 t f cβdt = c 2 a 0 t f at c 1+( at c ) 2 d( a c t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgadaWgaa WcbaGaamOzaaqabaGccqGH9aqpdaWdXbqaaiaadogacqaHYoGycaWG KbGaamiDaaWcbaGaaGimaaqaaiaadshadaWgaaadbaGaamOzaaqaba aaniabgUIiYdGccqGH9aqpdaWcaaqaaiaadogadaahaaWcbeqaaiaa ikdaaaaakeaacaWGHbaaamaapehabaWaaSaaaeaadaWcaaqaaiaadg gacaWG0baabaGaam4yaaaaaeaadaGcaaqaaiaaigdacqGHRaWkdaqa daqaamaalaaabaGaamyyaiaadshaaeaacaWGJbaaaaGaayjkaiaawM caaaWcbeaakmaaCaaaleqabaGaaGOmaaaaaaGccaWGKbWaaeWaaeaa daWcaaqaaiaadggaaeaacaWGJbaaaiaadshaaiaawIcacaGLPaaaaS qaaiaaicdaaeaacaWG0bWaaSbaaWqaaiaadAgaaeqaaaqdcqGHRiI8 aaaa@5AF4@  

(1.14)

Note that:

0 x f x 1+ x 2 dx= 1+ x f 2 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaapehabaWaaS aaaeaacaWG4baabaWaaOaaaeaacaaIXaGaey4kaSIaamiEamaaCaaa leqabaGaaGOmaaaaaeqaaaaakiaadsgacaWG4bGaeyypa0ZaaOaaae aacaaIXaGaey4kaSIaamiEamaaDaaaleaacaWGMbaabaGaaGOmaaaa aeqaaaqaaiaaicdaaeaacaWG4bWaaSbaaWqaaiaadAgaaeqaaaqdcq GHRiI8aOGaeyOeI0IaaGymaaaa@48DE@  

(1.15)

Then dx= a c dt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgacaWG4b Gaeyypa0ZaaSaaaeaacaWGHbaabaGaam4yaaaacaWGKbGaamiDaiaa ykW7aaa@3E23@  so the integral (1.14)  result is

d f = c 2 a ( 1+ ( a t f c ) 2 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgadaWgaa WcbaGaamOzaaqabaGccqGH9aqpdaWcaaqaaiaadogadaahaaWcbeqa aiaaikdaaaaakeaacaWGHbaaamaabmaabaWaaOaaaeaacaaIXaGaey 4kaSYaaeWaaeaadaWcaaqaaiaadggacaWG0bWaaSbaaSqaaiaadAga aeqaaaGcbaGaam4yaaaaaiaawIcacaGLPaaadaahaaWcbeqaaiaaik daaaaabeaakiabgkHiTiaaigdaaiaawIcacaGLPaaaaaa@471E@  

(1.16)

which for a t f c >>1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam yyaiaadshadaWgaaWcbaGaamOzaaqabaaakeaacaWGJbaaaiabg6da +iabg6da+iaaigdaaaa@3CAF@   becomes d f c t f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgadaWgaa WcbaGaamOzaaqabaGccqGHijYUcaWGJbGaamiDamaaBaaaleaacaWG Mbaabeaaaaa@3C9F@   and for a t f c <<1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam yyaiaadshadaWgaaWcbaGaamOzaaqabaaakeaacaWGJbaaaiabgYda 8iabgYda8iaaigdaaaa@3CA7@  becomes d f = a t f 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgadaWgaa WcbaGaamOzaaqabaGccqGH9aqpdaWcaaqaaiaadggacaWG0bWaa0ba aSqaaiaadAgaaeaacaaIYaaaaaGcbaGaaGOmaaaaaaa@3D84@  .

Solving  equation (1.16) for tf we obtain

1+ ( a t f c ) 2 = ( 1+ a d f c 2 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaigdacqGHRa WkdaqadaqaamaalaaabaGaamyyaiaadshadaWgaaWcbaGaamOzaaqa baaakeaacaWGJbaaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaa aakiabg2da9maabmaabaGaaGymaiabgUcaRmaalaaabaGaamyyaiaa dsgadaWgaaWcbaGaamOzaaqabaaakeaacaWGJbWaaWbaaSqabeaaca aIYaaaaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaaa@47EC@  

(1.17)

t f = c a ( 1+ a d f c 2 ) 2 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshadaWgaa WcbaGaamOzaaqabaGccqGH9aqpdaWcaaqaaiaadogaaeaacaWGHbaa amaakaaabaWaaeWaaeaacaaIXaGaey4kaSYaaSaaaeaacaWGHbGaam izamaaBaaaleaacaWGMbaabeaaaOqaaiaadogadaahaaWcbeqaaiaa ikdaaaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaey OeI0IaaGymaaWcbeaaaaa@45A0@  

(1.18)

so that for a d f c 2 <<1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaaeaa aaaaaaa8qacaWGHbGaamiza8aadaWgaaWcbaWdbiaadAgaa8aabeaa aOqaa8qacaWGJbWdamaaCaaaleqabaWdbiaaikdaaaaaaOGaeyipaW JaeyipaWJaaGymaaaa@3E06@  we have t f = 2 d f a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshadaWgaa WcbaGaamOzaaqabaGccqGH9aqpdaGcaaqaamaalaaabaGaaGOmaiaa dsgadaWgaaWcbaGaamOzaaqabaaakeaacaWGHbaaaaWcbeaaaaa@3CE3@  and for a d f c 2 >>1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaaeaa aaaaaaa8qacaWGHbGaamiza8aadaWgaaWcbaWdbiaadAgaa8aabeaa aOqaa8qacaWGJbWdamaaCaaaleqabaWdbiaaikdaaaaaaOWdaiabg6 da+iabg6da+8qacaaIXaaaaa@3E2D@  we have t f = d f c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshadaWgaa WcbaGaamOzaaqabaGccqGH9aqpdaWcaaqaaiaadsgadaWgaaWcbaGa amOzaaqabaaakeaacaWGJbaaaaaa@3C0E@ .

                                                                       

Here is the question: do these results differ from the results where a time difference is obtained by the effective gravitational field which results from the acceleration?  I think the latter assumes that the time involved in the acceleration is infinitesimal.