Magnetic Forces from Special Relativity

Introduction

The idea here is to show that the forces on a charged test particle in the vicinity of a wire carrying a current can be computed without reference to a magnetic field and to show that these have the same value as those computed from the magnetic field.  That is done by choosing a frame of reference where the particle is at rest while positive and negative the charge speeds  in the wire are modified to accommodate this particle frame of reference. 

In the laboratory frame let the particle speed be vo.  And let the negative charge speed in the wire be vc while the positive charge speed is 0 

Then in the particle at rest frame the negative charge speed is -vo+vc while the positive charge speed is -vo-vc which results in the beta values:

β = v o + v c c β + = v o v c c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeqOSdi 2aaSbaaSqaaiabgkHiTiaaykW7aeqaaOGaeyypa0JaeyOeI0YaaSaa aeaacqGHsislcaWG2bWaaSbaaSqaaiaad+gaaeqaaOGaey4kaSIaam ODamaaBaaaleaacaWGJbaabeaaaOqaaiaadogaaaaabaGaeqOSdi2a aSbaaSqaaiabgUcaRiaaykW7aeqaaOGaeyypa0JaeyOeI0YaaSaaae aacqGHsislcaWG2bWaaSbaaSqaaiaad+gaaeqaaOGaeyOeI0IaamOD amaaBaaaleaacaWGJbaabeaaaOqaaiaadogaaaaaaaa@5080@  

(1.1)

This expression for the betas gives the expected result, that the total charge density is zero when either vo=0 or vc=0. 

 

            For the total charge density Feynman would get a result like the following:

                                                                       

ρ= ρ 0 ( 1 1 β + 2 1 1 β 2 ) = ρ 0 ( 1 β 2 1 β + 2 1 β + 2 1 β 2 ) ρ 0 2 ( β + 2 β 2 1 β + 2 1 β 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeqyWdi Naeyypa0JaeqyWdi3aaSbaaSqaaiaaicdaaeqaaOWaaeWaaeaadaWc aaqaaiaaigdaaeaadaGcaaqaaiaaigdacqGHsislcqaHYoGydaqhaa WcbaGaey4kaScabaGaaGOmaaaaaeqaaaaakiabgkHiTmaalaaabaGa aGymaaqaamaakaaabaGaaGymaiabgkHiTiabek7aInaaDaaaleaacq GHsislaeaacaaIYaaaaaqabaaaaaGccaGLOaGaayzkaaaabaGaeyyp a0JaeqyWdi3aaSbaaSqaaiaaicdaaeqaaOWaaeWaaeaadaWcaaqaam aakaaabaGaaGymaiabgkHiTiabek7aInaaDaaaleaacqGHsislaeaa caaIYaaaaaqabaGccqGHsisldaGcaaqaaiaaigdacqGHsislcqaHYo GydaqhaaWcbaGaey4kaScabaGaaGOmaaaaaeqaaaGcbaWaaOaaaeaa caaIXaGaeyOeI0IaeqOSdi2aa0baaSqaaiabgUcaRaqaaiaaikdaaa aabeaakmaakaaabaGaaGymaiabgkHiTiabek7aInaaDaaaleaacqGH sislaeaacaaIYaaaaaqabaaaaaGccaGLOaGaayzkaaaabaGaeyisIS 7aaSaaaeaacqaHbpGCdaWgaaWcbaGaaGimaaqabaaakeaacaaIYaaa amaabmaabaWaaSaaaeaacqaHYoGydaqhaaWcbaGaey4kaScabaGaaG OmaaaakiabgkHiTiabek7aInaaDaaaleaacqGHsislaeaacaaIYaaa aaGcbaWaaOaaaeaacaaIXaGaeyOeI0IaeqOSdi2aa0baaSqaaiabgU caRaqaaiaaikdaaaaabeaakmaakaaabaGaaGymaiabgkHiTiabek7a InaaDaaaleaacqGHsislaeaacaaIYaaaaaqabaaaaaGccaGLOaGaay zkaaaaaaa@7DF7@  

 

                                                                    (1.2)

Expanding the result in equation (1.2) we get:

ρ ρ 0 2 c 2 ( ( v c + v o ) 2 ( v c v o ) 2 1 β + 2 1 β 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYjabgI Ki7oaalaaabaGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaaGcbaGaaGOm aiaadogadaahaaWcbeqaaiaaikdaaaaaaOWaaeWaaeaadaWcaaqaai aacIcacaWG2bWaaSbaaSqaaiaadogaaeqaaOGaey4kaSIaamODamaa BaaaleaacaWGVbaabeaakiaacMcadaahaaWcbeqaaiaaikdaaaGccq GHsisldaqadaqaaiaadAhadaWgaaWcbaGaam4yaaqabaGccqGHsisl caWG2bWaaSbaaSqaaiaad+gaaeqaaaGccaGLOaGaayzkaaWaaWbaaS qabeaacaaIYaaaaaGcbaWaaOaaaeaacaaIXaGaeyOeI0IaeqOSdi2a a0baaSqaaiabgUcaRaqaaiaaikdaaaaabeaakmaakaaabaGaaGymai abgkHiTiabek7aInaaDaaaleaacqGHsislaeaacaaIYaaaaaqabaaa aaGccaGLOaGaayzkaaaaaa@5AB3@  

(1.3)

ρ ρ 0 c 2 ( 2 v c v o 1 β + 2 1 β 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYjabgI Ki7oaalaaabaGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaaGcbaGaam4y amaaCaaaleqabaGaaGOmaaaaaaGcdaqadaqaamaalaaabaGaaGOmai aadAhadaWgaaWcbaGaam4yaaqabaGccaWG2bWaaSbaaSqaaiaad+ga aeqaaaGcbaWaaOaaaeaacaaIXaGaeyOeI0IaeqOSdi2aa0baaSqaai abgUcaRaqaaiaaikdaaaaabeaakmaakaaabaGaaGymaiabgkHiTiab ek7aInaaDaaaleaacqGHsislaeaacaaIYaaaaaqabaaaaaGccaGLOa Gaayzkaaaaaa@4EF1@  

(1.4)

The current density, since positive charge moves in +x direction and negative charge moves in the -x direction, is just

J=2 ρ 0 v c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQeacqGH9a qpcaaIYaGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaOGaamODamaaBaaa leaacaWGJbaabeaaaaa@3D3B@  

(1.5)

so we can express equation (1.4) in terms of the current, I, through the wire, I=JA:

I=JA MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMeacqGH9a qpcaWGkbGaamyqaaaa@3954@  

(1.6)

We can also express equation (1.4) as charge per length

            λ=ρA ρ 0 A c 2 ( 2 v c v o 1 β + 2 1 β 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeU7aSjabg2 da9iabeg8aYjaadgeacqGHijYUdaWcaaqaaiabeg8aYnaaBaaaleaa caaIWaaabeaakiaadgeaaeaacaWGJbWaaWbaaSqabeaacaaIYaaaaa aakmaabmaabaWaaSaaaeaacaaIYaGaamODamaaBaaaleaacaWGJbaa beaakiaadAhadaWgaaWcbaGaam4BaaqabaaakeaadaGcaaqaaiaaig dacqGHsislcqaHYoGydaqhaaWcbaGaey4kaScabaGaaGOmaaaaaeqa aOWaaOaaaeaacaaIXaGaeyOeI0IaeqOSdi2aa0baaSqaaiabgkHiTa qaaiaaikdaaaaabeaaaaaakiaawIcacaGLPaaaaaa@5337@        (1.7)

 

where λ is the charge per unit length and A is the cross sectional area of the wire.

Now the task is to show that the force on our test particle is the same whether we use I to compute the magnetic force or we use λ to compute the electrostatic force.

The electrostatic force is:

F E = qλ 2π ε 0 r 2q ρ 0 A v c v o 2π ε 0 r c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaamyraaqabaGccqGH9aqpdaWcaaqaaiaadghacqaH7oaBaeaa caaIYaGaeqiWdaNaeqyTdu2aaSbaaSqaaiaaicdaaeqaaOGaamOCaa aacqGHijYUdaWcaaqaaiaaikdacaWGXbGaeqyWdi3aaSbaaSqaaiaa icdaaeqaaOGaamyqaiaadAhadaWgaaWcbaGaam4yaaqabaGccaWG2b WaaSbaaSqaaiaad+gaaeqaaaGcbaGaaGOmaiabec8aWjabew7aLnaa BaaaleaacaaIWaaabeaakiaadkhacaWGJbWaaWbaaSqabeaacaaIYa aaaaaaaaa@547C@  

(1.8)

where q is the charge of the test particle and r is its distance from the wire.

The magnetic force is:

F B = q μ 0 JA 2πr = qJA v o 2π ε 0 r c 2 = 2q ρ 0 A v o v c 2π ε 0 r c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaamOqaaqabaGccqGH9aqpdaWcaaqaaiaadghacqaH8oqBdaWg aaWcbaGaaGimaaqabaGccaWGkbGaamyqaaqaaiaaikdacqaHapaCca WGYbaaaiabg2da9maalaaabaGaamyCaiaadQeacaWGbbGaamODamaa BaaaleaacaWGVbaabeaaaOqaaiaaikdacqaHapaCcqaH1oqzdaWgaa WcbaGaaGimaaqabaGccaWGYbGaam4yamaaCaaaleqabaGaaGOmaaaa aaGccqGH9aqpdaWcaaqaaiaaikdacaWGXbGaeqyWdi3aaSbaaSqaai aaicdaaeqaaOGaamyqaiaadAhadaWgaaWcbaGaam4BaaqabaGccaWG 2bWaaSbaaSqaaiaadogaaeqaaaGcbaGaaGOmaiabec8aWjabew7aLn aaBaaaleaacaaIWaaabeaakiaadkhacaWGJbWaaWbaaSqabeaacaaI Yaaaaaaaaaa@6166@  

(1.9)

 

Where I have set the gamma factors in (1.7) to unity.

Note that the forces are the same whether computed from magnetic fields or from electric fields.

 

 

http://www.feynmanlectures.caltech.edu/II_13.html#Ch13-S6