Taylor and Wheeler Lorentz Derivation

Prologue

The Taylor and Wheeler derivation relies entirely on the velocity invariance of the space time interval between two events.  This invariance is usually shown by a kinematics diagram where a light signal is emitted in a direction perpendicular to the usual direction of motion such as in Figure 1.

Figure 1: Kinematics diagram of the light pulses used to show that the space time interval between emission and detection is the same whether in the rocket frame moving at speed v or for a stationary earth observer.

The space-time quantity called the invariant (with respect to the observer's frame of reference) interval between two events is the expression

δ s 2 = c 2 δ t 2 (v)δ x 2 (v) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaado hadaahaaWcbeqaaiaaikdaaaGccqGH9aqpcaWGJbWaaWbaaSqabeaa caaIYaaaaOGaeqiTdqMaamiDamaaCaaaleqabaGaaGOmaaaakiaacI cacaWG2bGaaiykaiabgkHiTiabes7aKjaadIhadaahaaWcbeqaaiaa ikdaaaGccaGGOaGaamODaiaacMcaaaa@4917@  

(1.1)

that, strangely,  does not depend independently on the value of δx MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaadI haaaa@388E@  because cδt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadogacqaH0o azcaWG0bGaaGPaVdaa@3AFD@  changes just enough to compensate for the change in δx MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaadI haaaa@388E@ .  The kinematics of this become obvious when we draw a diagram of the emission, reflection, and reception of a light pulse which travels in a direction perpendicular to the x axis while the motion of the primed coordinate system is parallel to the x axis.

What I'd like to do is the re-write the interval in terms of the electromagnetic quantities that really constitute the speed of light squared, μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTbaa@37A2@  and ε MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew7aLbaa@3793@  .  Then the interval equation (1.1) becomes

δ s t 2 =δ t 2 (v)(με)δ x 2 (v) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaado hadaqhaaWcbaGaamiDaaqaaiaaikdaaaGccqGH9aqpcqaH0oazcaWG 0bWaaWbaaSqabeaacaaIYaaaaOGaaiikaiaadAhacaGGPaGaeyOeI0 IaaiikaiabeY7aTjabew7aLjaacMcacqaH0oazcaWG4bWaaWbaaSqa beaacaaIYaaaaOGaaiikaiaadAhacaGGPaaaaa@4CEB@  

(1.2)

where, for the time being, I have chosen to remove the zero subscripts from μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTbaa@37A2@  and ε MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew7aLbaa@3793@  so that the expression applies to a material body as well as vacuum.  This equation demands that space and time between two events are inextricably bound together regardless of the speed of the observer and the coefficient of the binding just happens to be με MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaakaaabaGaeq iVd0MaeqyTdugaleqaaaaa@3964@  which happens to be 1/c2.  If we, in the first place, had postulated that equation (1.2) holds regardless of the motion of the observer, we could have avoided the kinematics diagrams that lead to it.

Let's take the simplest case where the one reference frame is inside the rocket so the speed in that frame is zero then in that frame δx=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaadI hacqGH9aqpcaaIWaaaaa@3A4E@  :

δ s t 2 (0)=δ t 2 (0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaado hadaqhaaWcbaGaamiDaaqaaiaaikdaaaGccaGGOaGaaGimaiaacMca cqGH9aqpcqaH0oazcaWG0bWaaWbaaSqabeaacaaIYaaaaOGaaiikai aaicdacaGGPaaaaa@4331@  

(1.3)

Then relative to this interval any other interval will be the same so we can solve for δ t 2 (v) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaads hadaqhaaWcbaaabaGaaGOmaaaakiaacIcacaWG2bGaaiykaaaa@3BD1@  

δ t 2 (v)(με)δ x 2 (v)δ t 2 (0) δ t 2 (v)=δ t 2 (0)+(με)δ x 2 (v) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeqiTdq MaamiDamaaCaaaleqabaGaaGOmaaaakiaacIcacaWG2bGaaiykaiab gkHiTiaacIcacqaH8oqBcqaH1oqzcaGGPaGaeqiTdqMaamiEamaaCa aaleqabaGaaGOmaaaakiaacIcacaWG2bGaaiykaiabggMi6kabes7a KjaadshadaahaaWcbeqaaiaaikdaaaGccaGGOaGaaGimaiaacMcaae aacqaH0oazcaWG0bWaaWbaaSqabeaacaaIYaaaaOGaaiikaiaadAha caGGPaGaeyypa0JaeqiTdqMaamiDamaaCaaaleqabaGaaGOmaaaaki aacIcacaaIWaGaaiykaiabgUcaRiaacIcacqaH8oqBcqaH1oqzcaGG PaGaeqiTdqMaamiEamaaCaaaleqabaGaaGOmaaaakiaacIcacaWG2b Gaaiykaaaaaa@66E0@  

(1.4)

Since no transformation is required, it  is very easy to determine δ t 2 (0) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaads hadaqhaaWcbaaabaGaaGOmaaaakiaacIcacaaIWaGaaiykaaaa@3B90@ , so equation (1.4) gives us a very simple way to get a numerical value of δ t t 2 (v) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaads hadaqhaaWcbaGaamiDaaqaaiaaikdaaaGccaGGOaGaamODaiaacMca aaa@3CCA@  if we know δ x 2 (v) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaadI hadaqhaaWcbaaabaGaaGOmaaaakiaacIcacaWG2bGaaiykaaaa@3BD5@ .

Deriving The Lorentz Transformations from The Invariant Interval

            They take the case of the pi meson from the upper atmosphere whose lifetime is extended by a large factor by its speed.  The two events are the birth and death of the pi meson.  The distance between these events is   

x=vt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhacqGH9a qpcaWG2bGaamiDaaaa@39E2@  

(1.7)

where t is the time between events  and v is the speed of the pi meson after birth.  Taking the interval between the events we have

s 2 = c 2 t 2 x 2 = c 2 t 2 (v) 2 t 2 = c 2 t ' 2 x ' 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadohadaahaa WcbeqaaiaaikdaaaGccqGH9aqpcaWGJbWaaWbaaSqabeaacaaIYaaa aOGaamiDamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadIhadaahaa WcbeqaaiaaikdaaaGccqGH9aqpcaWGJbWaaWbaaSqabeaacaaIYaaa aOGaamiDamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaacIcacaWG2b GaaiykamaaCaaaleqabaGaaGOmaaaakiaadshadaahaaWcbeqaaiaa ikdaaaGccqGH9aqpcaWGJbWaaWbaaSqabeaacaaIYaaaaOGaamiDai aacEcadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWG4bGaai4jamaa CaaaleqabaGaaGOmaaaaaaa@5363@  

(1.8)

where t' and x' are the time and position in the meson inertial frame and the intervals are the same in both frames.   Of course the value of x' is always 0 in the meson frame and the time between birth and  death, t', in the meson frame is tπ which is about 8 nanoseconds.  Now we can solve for the value of t.

t= t π 1 (v/c) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshacqGH9a qpdaWcaaqaaiaadshadaWgaaWcbaGaeqiWdahabeaaaOqaamaakaaa baGaaGymaiabgkHiTiaacIcacaWG2bGaai4laiaadogacaGGPaWaaW baaSqabeaacaaIYaaaaaqabaaaaaaa@4176@  

(1.9)

and then we also have

x= v t π 1 (v/c) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhacqGH9a qpdaWcaaqaaiaadAhacaWG0bWaaSbaaSqaaiabec8aWbqabaaakeaa daGcaaqaaiaaigdacqGHsislcaGGOaGaamODaiaac+cacaWGJbGaai ykamaaCaaaleqabaGaaGOmaaaaaeqaaaaaaaa@4275@  

(1.10)

            Note that the most fundamental concept used here is the invariance of the interval which, in turn, relies on the fact that the  speed of light is the same in all inertial frames of reference. 

 

            The simple way of deriving the invariance of the interval is to set up a clock on a rocket where light pulses are sent along the y axis in the rocket frame to a mirror at a given distance from the rocket and then received.  The lab frame's time interval between sending and reception is different from that of the rocket  but the interval between sending and reception is the same in both frames.

 

The foregoing is a rather special case in that x'=0.  Let's now generalize this to cases where x' can be any value.  We can write equations (1.9) and (1.10) to include both t' and x'. 

ct= ct' 1 (v/c) 2 +Ax' x= vt' 1 (v/c) 2 +Bx' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaam4yai aadshacqGH9aqpdaWcaaqaaiaadogacaWG0bGaai4jaaqaamaakaaa baGaaGymaiabgkHiTiaacIcacaWG2bGaai4laiaadogacaGGPaWaaW baaSqabeaacaaIYaaaaaqabaaaaOGaey4kaSIaamyqaiaadIhacaGG NaaabaGaamiEaiabg2da9maalaaabaGaamODaiaadshacaGGNaaaba WaaOaaaeaacaaIXaGaeyOeI0IaaiikaiaadAhacaGGVaGaam4yaiaa cMcadaahaaWcbeqaaiaaikdaaaaabeaaaaGccqGHRaWkcaWGcbGaam iEaiaacEcaaaaa@53FC@  

(1.11)

Again require that the interval in both frames be the same:

                                                                       

c 2 t 2 x 2 = c 2 t ' 2 x ' 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadogadaahaa WcbeqaaiaaikdaaaGccaWG0bWaaWbaaSqabeaacaaIYaaaaOGaeyOe I0IaamiEamaaCaaaleqabaGaaGOmaaaakiabg2da9iaadogadaahaa WcbeqaaiaaikdaaaGccaWG0bGaai4jamaaCaaaleqabaGaaGOmaaaa kiabgkHiTiaadIhacaGGNaWaaWbaaSqabeaacaaIYaaaaaaa@4585@  

(1.12)

c 2 t 2 x 2 = ( ct ' 1 (v/c) 2 +Ax' ) 2 ( vt' 1 (v/c) 2 +Bx' ) 2 = c 2 t ' 2 1 (v/c) 2 + 2cAt'x' 1 (v/c) 2 + A 2 x ' 2 ( v 2 t ' 2 1 (v/c) 2 + 2Bvt'x' 1 (v/c) 2 + B 2 x ' 2 )= c 2 t ' 2 x ' 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaam4yam aaCaaaleqabaGaaGOmaaaakiaadshadaahaaWcbeqaaiaaikdaaaGc cqGHsislcaWG4bWaaWbaaSqabeaacaaIYaaaaOGaeyypa0dabaWaae WaaeaadaWcaaqaaiaadogacaWG0bGaai4jamaaCaaaleqabaaaaaGc baWaaOaaaeaacaaIXaGaeyOeI0IaaiikaiaadAhacaGGVaGaam4yai aacMcadaahaaWcbeqaaiaaikdaaaaabeaaaaGccqGHRaWkcaWGbbGa amiEaiaacEcaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccq GHsisldaqadaqaamaalaaabaGaamODaiaadshacaGGNaaabaWaaOaa aeaacaaIXaGaeyOeI0IaaiikaiaadAhacaGGVaGaam4yaiaacMcada ahaaWcbeqaaiaaikdaaaaabeaaaaGccqGHRaWkcaWGcbGaamiEaiaa cEcaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaakeaacqGH9a qpdaWcaaqaaiaadogadaahaaWcbeqaaiaaikdaaaGccaWG0bGaai4j amaaCaaaleqabaGaaGOmaaaaaOqaaiaaigdacqGHsislcaGGOaGaam ODaiaac+cacaWGJbGaaiykamaaCaaaleqabaGaaGOmaaaaaaGccqGH RaWkdaWcaaqaaiaaikdacaWGJbGaamyqaiaadshacaGGNaGaamiEai aacEcaaeaadaGcaaqaaiaaigdacqGHsislcaGGOaGaamODaiaac+ca caWGJbGaaiykamaaCaaaleqabaGaaGOmaaaaaeqaaaaakiabgUcaRi aadgeadaahaaWcbeqaaiaaikdaaaGccaWG4bGaai4jamaaCaaaleqa baGaaGOmaaaakiabgkHiTmaabmaabaWaaSaaaeaacaWG2bWaaWbaaS qabeaacaaIYaaaaOGaamiDaiaacEcadaahaaWcbeqaaiaaikdaaaaa keaacaaIXaGaeyOeI0IaaiikaiaadAhacaGGVaGaam4yaiaacMcada ahaaWcbeqaaiaaikdaaaaaaOGaey4kaSYaaSaaaeaacaaIYaGaamOq aiaadAhacaWG0bGaai4jaiaadIhacaGGNaaabaWaaOaaaeaacaaIXa GaeyOeI0IaaiikaiaadAhacaGGVaGaam4yaiaacMcadaahaaWcbeqa aiaaikdaaaaabeaaaaGccqGHRaWkcaWGcbWaaWbaaSqabeaacaaIYa aaaOGaamiEaiaacEcadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGL PaaacqGH9aqpcaWGJbWaaWbaaSqabeaacaaIYaaaaOGaamiDaiaacE cadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWG4bGaai4jamaaCaaa leqabaGaaGOmaaaaaaaa@A47B@  

(1.13)

Collecting t'2 terms we have a simpler equation:

c 2 t 2 x 2 = c 2 t ' 2 + 2cAt'x' 1 (v/c) 2 + A 2 x ' 2 ( 2Bvt'x' 1 (v/c) 2 + B 2 x ' 2 )= c 2 t ' 2 x ' 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadogadaahaa WcbeqaaiaaikdaaaGccaWG0bWaaWbaaSqabeaacaaIYaaaaOGaeyOe I0IaamiEamaaCaaaleqabaGaaGOmaaaakiabg2da9iaadogadaahaa WcbeqaaiaaikdaaaGccaWG0bGaai4jamaaCaaaleqabaGaaGOmaaaa kiabgUcaRmaalaaabaGaaGOmaiaadogacaWGbbGaamiDaiaacEcaca WG4bGaai4jaaqaamaakaaabaGaaGymaiabgkHiTiaacIcacaWG2bGa ai4laiaadogacaGGPaWaaWbaaSqabeaacaaIYaaaaaqabaaaaOGaey 4kaSIaamyqamaaCaaaleqabaGaaGOmaaaakiaadIhacaGGNaWaaWba aSqabeaacaaIYaaaaOGaeyOeI0YaaeWaaeaadaWcaaqaaiaaikdaca WGcbGaamODaiaadshacaGGNaGaamiEaiaacEcaaeaadaGcaaqaaiaa igdacqGHsislcaGGOaGaamODaiaac+cacaWGJbGaaiykamaaCaaale qabaGaaGOmaaaaaeqaaaaakiabgUcaRiaadkeadaahaaWcbeqaaiaa ikdaaaGccaWG4bGaai4jamaaCaaaleqabaGaaGOmaaaaaOGaayjkai aawMcaaiabg2da9iaadogadaahaaWcbeqaaiaaikdaaaGccaWG0bGa ai4jamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadIhacaGGNaWaaW baaSqabeaacaaIYaaaaaaa@7196@  

(1.14)

which means that the remaining x' terms on the left must equal -x'2.

2cAt'x' 1 (v/c) 2 + A 2 x ' 2 ( 2Bvt'x' 1 (v/c) 2 + B 2 x ' 2 )=x ' 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG OmaiaadogacaWGbbGaamiDaiaacEcacaWG4bGaai4jaaqaamaakaaa baGaaGymaiabgkHiTiaacIcacaWG2bGaai4laiaadogacaGGPaWaaW baaSqabeaacaaIYaaaaaqabaaaaOGaey4kaSIaamyqamaaCaaaleqa baGaaGOmaaaakiaadIhacaGGNaWaaWbaaSqabeaacaaIYaaaaOGaey OeI0YaaeWaaeaadaWcaaqaaiaaikdacaWGcbGaamODaiaadshacaGG NaGaamiEaiaacEcaaeaadaGcaaqaaiaaigdacqGHsislcaGGOaGaam ODaiaac+cacaWGJbGaaiykamaaCaaaleqabaGaaGOmaaaaaeqaaaaa kiabgUcaRiaadkeadaahaaWcbeqaaiaaikdaaaGccaWG4bGaai4jam aaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaiabg2da9iabgkHi TiaadIhacaGGNaWaaWbaaSqabeaacaaIYaaaaaaa@6026@  

(1.15)

Obviously the cross term in t'x' must be zero so

A=(v/c)B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgeacqGH9a qpcaGGOaGaamODaiaac+cacaWGJbGaaiykaiaadkeaaaa@3C6D@  

(1.16)

And we also have the condition that

A 2 B 2 =1 [(v/c)B] 2 B 2 =1 B= 1 1 (v/c) 2 A= v/c 1 (v/c) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyqam aaCaaaleqabaGaaGOmaaaakiabgkHiTiaadkeadaahaaWcbeqaaiaa ikdaaaGccqGH9aqpcqGHsislcaaIXaaabaGaai4waiaacIcacaWG2b Gaai4laiaadogacaGGPaGaamOqaiaac2fadaahaaWcbeqaaiaaikda aaGccqGHsislcaWGcbWaaWbaaSqabeaacaaIYaaaaOGaeyypa0Jaey OeI0IaaGymaaqaaiaadkeacqGH9aqpdaWcaaqaaiaaigdaaeaadaGc aaqaaiaaigdacqGHsislcaGGOaGaamODaiaac+cacaWGJbGaaiykam aaCaaaleqabaGaaGOmaaaaaeqaaaaaaOqaaiaadgeacqGH9aqpdaWc aaqaaiaadAhacaGGVaGaam4yaaqaamaakaaabaGaaGymaiabgkHiTi aacIcacaWG2bGaai4laiaadogacaGGPaWaaWbaaSqabeaacaaIYaaa aaqabaaaaaaaaa@5DF4@  

(1.17)

Using these results we write the final expressions for equation (1.11)

ct= ct' 1 (v/c) 2 + (v/c)x' 1 (v/c) 2 x= vt' 1 (v/c) 2 + x' 1 (v/c) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaam4yai aadshacqGH9aqpdaWcaaqaaiaadogacaWG0bGaai4jaaqaamaakaaa baGaaGymaiabgkHiTiaacIcacaWG2bGaai4laiaadogacaGGPaWaaW baaSqabeaacaaIYaaaaaqabaaaaOGaey4kaSYaaSaaaeaacaGGOaGa amODaiaac+cacaWGJbGaaiykaiaadIhacaGGNaaabaWaaOaaaeaaca aIXaGaeyOeI0IaaiikaiaadAhacaGGVaGaam4yaiaacMcadaahaaWc beqaaiaaikdaaaaabeaaaaaakeaacaWG4bGaeyypa0ZaaSaaaeaaca WG2bGaamiDaiaacEcaaeaadaGcaaqaaiaaigdacqGHsislcaGGOaGa amODaiaac+cacaWGJbGaaiykamaaCaaaleqabaGaaGOmaaaaaeqaaa aakiabgUcaRmaalaaabaGaamiEaiaacEcaaeaadaGcaaqaaiaaigda cqGHsislcaGGOaGaamODaiaac+cacaWGJbGaaiykamaaCaaaleqaba GaaGOmaaaaaeqaaaaaaaaa@63A8@  

 (1.18)