Thermal Conductivity and the Evolution of the Second Law of Thermodynamics

Introduction

            This animation shows the exchange of energy of three adjacent gas domains at the two impermeable boundaries between them.  The impermeable boundaries are needed in order to keep the atoms from the warmer region from simply diffusing into the cooler region.  So, in effect, our three regions are solids that can exchange energy with the adjacent region but don't lose any of their atoms to that region.

 

            In a previous animation we showed that the more energetic gas atoms, on average, give up during collisions, some of their energy to the less energetic gas atoms.  That is exactly what happens at the boundary between two gas domains where the respective gases have different energies (or, equivalently, different temperatures).  This results in heat energy flow from the higher temperature domain to the lower temperature domain. It is shown in the Appendix that the flow of energy from more energetic particles to less energetic particles occurs even for particles of different mass.  This is a statement of the second law of thermodynamics for microscopic bodies.  When I apply the same principles to whole regions of higher energy (temperature) then this shows the evolution of the second law of thermodynamics for macroscopic bodies as advertised in the title.

 

            In this document, I will first give the standard thermal conductivity treatment for the three slabs of which this system is comprised.  Then I will document on a more microscopic basis the dynamics how the time-dependent temperature distributions are achieved.  In the Appendix I show the mathematics of the velocity changes when two particles of different mass and arbitrary velocities collide.

Figures

Figure 1: Diagram of the animation considerably before energy (temperature) evolution was complete.  Note that the average energy (temperature) of the red domain exceeds that of the green domain and the green domain average energy exceeds that of the blue as can be seen from the ordinate labels at the left of the domains.  In this animation the green domain had 600 atoms while the red and blue domains had 500 atoms.  If you look closely, you will see that the boundaries between the domains are "puckered" when one of the atoms of a domain transgresses into the other domain.  Sometimes when this happens, the transgressing atom collides with an atom in the other domain exchanging energy with it.  That is the essence of how heat is exchanged between domains.

Figure 2: Diagram of the animation when energy (temperature) evolution was reasonably complete.  Note that the average energy (temperature) of the three domains is almost the same as can be seen from the ordinate labels at the left of the domains.  The differences are due to the finite number of atoms.

 

Animation Setup

            For simplicity I have chosen to have just three domains arranged as layers.  The top and bottom layer can be considered to represent solids.  In solids, quantum entities known as phonons carry heat via vibrational modes. Phonons behave much the same as the kinetic energies of atoms so their equilibration and exchange of energies is reasonably represented by the kinetic energy of atoms.  For even more simplicity I have chosen the number of atoms in the top and bottom layers to be the same so, when their average energies (temperatures) are equal, the thermal conductivity of these layers will be the same.  To make the problem more interesting, the learner may select (within limits) the number of atoms in the middle layer and this will make the thermal conductivity (and heat capacity) of that layer different from the other two.

Macroscopic Temperature Calculations

            To compute the temperature distributions Vs time we need to have access to two parameters:

1. The thermal conductivity, K (Watts m-1 Kelvin-1)

2. The heat capacity, C (Joules m-3 Kelvin-1)

The ratio of K to C is called the diffusivity, D=K/C (m2/sec).

The temperature, T, Vs time, t, can be found from the differential equation:

(DT)= T t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgEGirlabgk ci3kaacIcacaWGebGaey4bIeTaamivaiaacMcacqGH9aqpdaWcaaqa aiabgkGi2kaadsfaaeaacqGHciITcaWG0baaaaaa@432B@                                                                      (1)

where the first inverted delta on the left is the divergence and the second is the gradient.

 

Initial Conditions Matching with Complementary Solution

 

            We need a solution to specify the transients that occur starting at t=0.  For that we use a technique called "separation of variables" which I will explain next.  We have the three equations:

y ( D j T y )= T t j=1....3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIylabaGaeyOaIyRaamyEaaaadaqadaqaaiaadseadaWgaaWcbaGa amOAaaqabaGcdaWcaaqaaiabgkGi2kaadsfaaeaacqGHciITcaWG5b WaaSbaaSqaaaqabaaaaaGccaGLOaGaayzkaaGaeyypa0ZaaSaaaeaa cqGHciITcaWGubaabaGaeyOaIyRaamiDaaaacaaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caWGQbGaeyypa0JaaGymaiaac6cacaGG UaGaaiOlaiaac6cacaaIZaaaaa@5750@                                                              (2)

We make the assumption that each of the Ts can be written:

T=Y(y)Τ(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfacqGH9a qpcaWGzbGaaiikaiaadMhacaGGPaGaeuiPdqLaaiikaiaadshacaGG Paaaaa@3ED7@

Then equation 2 can be rewritten:

d dy D dY dy =ΛY dΤ dt =ΛΤ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaWaaSaaae aacaWGKbaabaGaamizaiaadMhaaaGaamiramaalaaabaGaamizaiaa dMfaaeaacaWGKbGaamyEaaaacqGH9aqpcqGHsislcqqHBoatcaWGzb aabaWaaSaaaeaacaWGKbGaeuiPdqfabaGaamizaiaadshaaaGaeyyp a0JaeyOeI0Iaeu4MdWKaeuiPdqfaaaa@4AEE@                                                                                               (3a,b)

where Λ is called the eigenvalue.                     

The solution for equation 3b

T i = T 0i exp(Λt) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaamyAaaqabaGccqGH9aqpcaWGubWaaSbaaSqaaiaaicdacaWG PbaabeaakiGacwgacaGG4bGaaiiCaiaacIcacqGHsislcqqHBoatca WG0bGaaiykaaaa@4334@                                                                                  (4)

 

Describing the Initial Conditions

            We have three layers of thickness L1, L2, and L3 and temperatures T1, T2, and T3.

The initial temperature, Ti, Vs y can be written piecewise (denoted by subscript p) as:

T p = T 1 ify< L 1 else T p = T 2 ify< L 1 + L 2 else T p = T 3 ify< L 1 + L 2 + L 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabiaaeaqabe aacaWGubWaaSbaaSqaaiaadchaaeqaaOGaeyypa0JaamivamaaBaaa leaacaaIXaaabeaakiaaykW7caaMc8UaaGPaVlaaykW7caWGPbGaam OzaiaaykW7caWG5bGaeyipaWJaamitamaaBaaaleaacaaIXaaabeaa aOqaaiaadwgacaWGSbGaam4CaiaadwgacaaMc8UaamivamaaBaaale aacaWGWbaabeaakiabg2da9iaadsfadaWgaaWcbaGaaGOmaaqabaGc caaMc8UaaGPaVlaaykW7caaMc8UaamyAaiaadAgacaaMc8UaamyEai abgYda8iaadYeadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGmbWa aSbaaSqaaiaaikdaaeqaaaGcbaGaamyzaiaadYgacaWGZbGaamyzai aaykW7caWGubWaaSbaaSqaaiaadchaaeqaaOGaeyypa0Jaamivamaa BaaaleaacaaIZaaabeaakiaaykW7caaMc8UaaGPaVlaaykW7caWGPb GaamOzaiaaykW7caWG5bGaeyipaWJaamitamaaBaaaleaacaaIXaaa beaakiabgUcaRiaadYeadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkca WGmbWaaSbaaSqaaiaaiodaaeqaaaaakiaawMcaaaaa@7FB6@                                                          (5)

Similarly the diffusion coefficient D can be expressed piecewise as:

D p = D 1 ify< L 1 else D p = D 2 ify< L 1 + L 2 else D p = D 3 ify< L 1 + L 2 + L 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabiaaeaqabe aacaWGebWaaSbaaSqaaiaadchaaeqaaOGaeyypa0JaamiramaaBaaa leaacaaIXaaabeaakiaaykW7caaMc8UaaGPaVlaaykW7caWGPbGaam OzaiaaykW7caWG5bGaeyipaWJaamitamaaBaaaleaacaaIXaaabeaa aOqaaiaadwgacaWGSbGaam4CaiaadwgacaaMc8UaamiramaaBaaale aacaWGWbaabeaakiabg2da9iaadseadaWgaaWcbaGaaGOmaaqabaGc caaMc8UaaGPaVlaaykW7caaMc8UaamyAaiaadAgacaaMc8UaamyEai abgYda8iaadYeadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGmbWa aSbaaSqaaiaaikdaaeqaaaGcbaGaamyzaiaadYgacaWGZbGaamyzai aaykW7caWGebWaaSbaaSqaaiaadchaaeqaaOGaeyypa0Jaamiramaa BaaaleaacaaIZaaabeaakiaaykW7caaMc8UaaGPaVlaaykW7caWGPb GaamOzaiaaykW7caWG5bGaeyipaWJaamitamaaBaaaleaacaaIXaaa beaakiabgUcaRiaadYeadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkca WGmbWaaSbaaSqaaiaaiodaaeqaaaaakiaawMcaaaaa@7F56@                                                        (6)

In order to solve the differential equation we need to express Tp and Dp as periodic on the interval P=L1+L2+L3 where P is the period of what will be the Fourier series describing T(y) and D(y). The series expressing Ti is:

Τ i (y)= n= g n exp( 2iπny P ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs6aunaaBa aaleaacaWGPbaabeaakiaacIcacaWG5bGaaiykaiabg2da9maaqaha baGaam4zamaaBaaaleaacaWGUbaabeaakiGacwgacaGG4bGaaiiCam aabmaabaWaaSaaaeaacaaIYaGaamyAaiabec8aWjaad6gacaWG5baa baGaamiuaaaaaiaawIcacaGLPaaaaSqaaiaad6gacqGH9aqpcqGHsi slcqGHEisPaeaacqGHEisPa0GaeyyeIuoaaaa@50B2@

where

g n = 1 P 0 P T p (y)exp( 2πiny P ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEgadaWgaa WcbaGaamOBaaqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaWGqbaa amaapedabaGaamivamaaBaaaleaacaWGWbaabeaakiaacIcacaWG5b GaaiykaiGacwgacaGG4bGaaiiCamaabmaabaGaeyOeI0YaaSaaaeaa caaIYaGaeqiWdaNaamyAaiaad6gacaWG5baabaGaamiuaaaaaiaawI cacaGLPaaaaSqaaiaaicdaaeaacaWGqbaaniabgUIiYdaaaa@4E47@

It is quite easy to perform the integral for gn:

g n = 1 2πin { T 1 [ 1exp( 2πin L 1 P ) ]+ T 2 [ exp( 2πin L 1 P )exp( 2πin( L 1 + L 2 ) P ) ]+ T 3 [ exp( 2πin( L 1 + L 2 ) P )exp( 2πin( L 1 + L 2 + L 3 ) P ) ] }n0 g 0 = L 1 T 1 + L 2 T 2 + L 3 T 3 P = T aveage n=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaam4zam aaBaaaleaacaWGUbaabeaakiabg2da9maalaaabaGaaGymaaqaaiaa ikdacqaHapaCcaWGPbGaamOBaaaadaGadaabaeqabaGaamivamaaBa aaleaacaaIXaaabeaakmaadmaabaGaaGymaiabgkHiTiGacwgacaGG 4bGaaiiCamaabmaabaWaaSaaaeaacqGHsislcaaIYaGaeqiWdaNaam yAaiaad6gacaWGmbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaamiuaaaa aiaawIcacaGLPaaaaiaawUfacaGLDbaacqGHRaWkcaWGubWaaSbaaS qaaiaaikdaaeqaaOWaamWaaeaaciGGLbGaaiiEaiaacchadaqadaqa amaalaaabaGaeyOeI0IaaGOmaiabec8aWjaadMgacaWGUbGaamitam aaBaaaleaacaaIXaaabeaaaOqaaiaadcfaaaaacaGLOaGaayzkaaGa eyOeI0IaciyzaiaacIhacaGGWbWaaeWaaeaadaWcaaqaaiabgkHiTi aaikdacqaHapaCcaWGPbGaamOBaiaacIcacaWGmbWaaSbaaSqaaiaa igdaaeqaaOGaey4kaSIaamitamaaBaaaleaacaaIYaaabeaakiaacM caaeaacaWGqbaaaaGaayjkaiaawMcaaaGaay5waiaaw2faaiabgUca RaqaaiaadsfadaWgaaWcbaGaaG4maaqabaGcdaWadaqaaiGacwgaca GG4bGaaiiCamaabmaabaWaaSaaaeaacqGHsislcaaIYaGaeqiWdaNa amyAaiaad6gacaGGOaGaamitamaaBaaaleaacaaIXaaabeaakiabgU caRiaadYeadaWgaaWcbaGaaGOmaaqabaGccaGGPaaabaGaamiuaaaa aiaawIcacaGLPaaacqGHsislciGGLbGaaiiEaiaacchadaqadaqaam aalaaabaGaeyOeI0IaaGOmaiabec8aWjaadMgacaWGUbGaaiikaiaa dYeadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGmbWaaSbaaSqaai aaikdaaeqaaOGaey4kaSIaamitamaaBaaaleaacaaIZaaabeaakiaa cMcaaeaacaWGqbaaaaGaayjkaiaawMcaaaGaay5waiaaw2faaaaaca GL7bGaayzFaaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGUbGa eyiyIKRaaGimaaqaaiaadEgadaWgaaWcbaGaaGimaaqabaGccqGH9a qpdaWcaaqaaiaadYeadaWgaaWcbaGaaGymaaqabaGccaWGubWaaSba aSqaaiaaigdaaeqaaOGaey4kaSIaamitamaaBaaaleaacaaIYaaabe aakiaadsfadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWGmbWaaSba aSqaaiaaiodaaeqaaOGaamivamaaBaaaleaacaaIZaaabeaaaOqaai aadcfaaaGaeyypa0JaamivamaaBaaaleaacaWGHbGaamODaiaadwga caWGHbGaam4zaiaadwgacaaMc8oabeaakiaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaamOBaiabg2da9iaaicdaaaaa@6E15@  Note that the average value of T is equal to g0

 

Equations 5 and 6 have the problem that their first and second derivatives with respect to y are infinite at the interfaces between the layers.  That can be rectified by using a "soft" step function at the interfaces.  This step function is implemented by using 1/2 period of a sine wave.

step( T avg , T diff ,y, y 0 ,w)=if(y y 0 wandy y 0 +w) T avg + T diff sin( π(y y 0 ) 2w ) elsestep( T avg , T diff ,y, y 0 ,w)=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaam4Cai aadshacaWGLbGaamiCaiaacIcacaWGubWaaSbaaSqaaiaadggacaWG 2bGaam4zaaqabaGccaGGSaGaamivamaaBaaaleaacaWGKbGaamyAai aadAgacaWGMbaabeaakiaacYcacaWG5bGaaiilaiaadMhadaWgaaWc baGaaGimaaqabaGccaGGSaGaam4DaiaacMcacqGH9aqpcaWGPbGaam OzaiaacIcacaWG5bGaeyyzImRaamyEamaaBaaaleaacaaIWaaabeaa kiabgkHiTiaadEhacaaMc8UaaGPaVlaaykW7caaMc8Uaamyyaiaad6 gacaWGKbGaaGPaVlaaykW7caWG5bGaeyizImQaamyEamaaBaaaleaa caaIWaaabeaakiabgUcaRiaadEhacaaMc8UaaiykaiaaykW7caaMc8 UaaGPaVlaadsfadaWgaaWcbaGaamyyaiaadAhacaWGNbaabeaakiab gUcaRiaadsfadaWgaaWcbaGaamizaiaadMgacaWGMbGaamOzaaqaba GcciGGZbGaaiyAaiaac6gadaqadaqaamaalaaabaGaeqiWdaNaaiik aiaadMhacqGHsislcaWG5bWaaSbaaSqaaiaaicdaaeqaaOGaaiykaa qaaiaaikdacaWG3baaaaGaayjkaiaawMcaaiaaykW7caaMc8UaaGPa VdqaaiaadwgacaWGSbGaam4CaiaadwgacaaMc8Uaam4Caiaadshaca WGLbGaamiCaiaacIcacaWGubWaaSbaaSqaaiaadggacaWG2bGaam4z aaqabaGccaGGSaGaamivamaaBaaaleaacaWGKbGaamyAaiaadAgaca WGMbaabeaakiaacYcacaWG5bGaaiilaiaadMhadaWgaaWcbaGaaGim aaqabaGccaGGSaGaam4DaiaacMcacqGH9aqpcaaIWaaaaaa@A481@

where w is 1/2 of the width of the step, y0 is the center of the step, Tavg=(Ta+Tb)/2, and Tdiff=(Tb-Ta)/2 where Ta is the temperature at the start of the step and Tb is the temperature at the end of the step.  Similar expressions can apply for steps in D. The step function must be applied at the transition between T1 and T2, T2 and T3 and for the transition from T3 back to T1.  This results in a more complicated function Tp(y) and it is necessary to do the integrations for gn numerically.

Case 1:D is the same in all layers:

The second derivative of Ti with respect to y is:

D d 2 Τ i (y) d y 2 =D 4 π 2 P 2 n= g n n 2 exp( 2iπny P ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadseadaWcaa qaaiaadsgadaahaaWcbeqaaiaaikdaaaGccqqHKoavdaWgaaWcbaGa amyAaaqabaGccaGGOaGaamyEaiaacMcaaeaacaWGKbGaamyEamaaCa aaleqabaGaaGOmaaaaaaGccqGH9aqpcqGHsislcaWGebWaaSaaaeaa caaI0aGaeqiWda3aaWbaaSqabeaacaaIYaaaaaGcbaGaamiuamaaCa aaleqabaGaaGOmaaaaaaGcdaaeWbqaaiaadEgadaWgaaWcbaGaamOB aaqabaGccaWGUbWaaWbaaSqabeaacaaIYaaaaOGaciyzaiaacIhaca GGWbWaaeWaaeaadaWcaaqaaiaaikdacaWGPbGaeqiWdaNaamOBaiaa dMhaaeaacaWGqbaaaaGaayjkaiaawMcaaaWcbaGaamOBaiabg2da9i abgkHiTiabg6HiLcqaaiabg6HiLcqdcqGHris5aaaa@5F23@

If D is the same in the 3 layers then we can immediately write that

 

Λ n = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfU5amnaaBa aaleaacaWGUbaabeaakiabg2da9aaa@398F@ D 4 π 2 n 2 P 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadseadaWcaa qaaiaaisdacqaHapaCdaahaaWcbeqaaiaaikdaaaGccaWGUbWaaWba aSqabeaacaaIYaaaaaGcbaGaamiuamaaCaaaleqabaGaaGOmaaaaaa aaaa@3DD6@

so that

T(y,t)=[ g n exp( 2iπny P )exp( Λ n t ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfacaGGOa GaamyEaiaacYcacaWG0bGaaiykaiabg2da9maadmaabaWaaabCaeaa caWGNbWaaSbaaSqaaiaad6gaaeqaaOGaciyzaiaacIhacaGGWbWaae WaaeaadaWcaaqaaiaaikdacaWGPbGaeqiWdaNaamOBaiaadMhaaeaa caWGqbaaaaGaayjkaiaawMcaaiGacwgacaGG4bGaaiiCamaabmaaba GaeyOeI0Iaeu4MdW0aaSbaaSqaaiaad6gaaeqaaOGaamiDaaGaayjk aiaawMcaaaWcbaGaeyOeI0IaeyOhIukabaGaeyOhIukaniabggHiLd aakiaawUfacaGLDbaaaaa@5975@

The results for T Vs t at various y values are shown in Figure 3 below:

Figure 3: Temperature Vs time at several locations near the temperature transition boundaries computed using alternative software.  Note the very high rates of change of temperatures near t=0.  Note that the second and third curves are not even monotonic in their progress toward their final value. This is due to the very large gradient at the zone boundaries.  This result is in good qualitative agreement with a similar finite element analysis.

 

Figure 4. Temperature Vs Time obtained when the "Macroscopic" button is pressed.  Note the very high rates of initial temperature change due to large initial boundary gradients.  The 15 traces are displaced so that their final )equilibrated temperature ordinates lie at the y value for which that trace stands.  In the green region, note that the slope of the temperature Vs time actually changes sign as it progresses toward equilibrium.  That is due to the fact that it is initially adjacent to a much cooler or hotter region.

Figure 5. Earlier version of Figure 4.  This shows a better description of the temperature profile at the right.

 

 

Case 2: D is different in all layers

In exactly the same manner we can write a Fourier series to express Dp:

D(y)= n= f n exp( 2iπny P ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadseacaGGOa GaamyEaiaacMcacqGH9aqpdaaeWbqaaiaadAgadaWgaaWcbaGaamOB aaqabaGcciGGLbGaaiiEaiaacchadaqadaqaamaalaaabaGaaGOmai aadMgacqaHapaCcaWGUbGaamyEaaqaaiaadcfaaaaacaGLOaGaayzk aaaaleaacaWGUbGaeyypa0JaeyOeI0IaeyOhIukabaGaeyOhIukani abggHiLdaaaa@4ED0@

f n = 1 2πin { D 1 [ 1exp( 2πin L 1 P ) ]+ D 2 [ exp( 2πin L 1 P )exp( 2πin( L 1 + L 2 ) P ) ]+ D 3 [ exp( 2πin( L 1 + L 2 ) P )exp( 2πin( L 1 + L 2 + L 3 ) P ) ] }n0 f 0 = L 1 D 1 + L 2 D 2 + L 3 D 3 P = D average n=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamOzam aaBaaaleaacaWGUbaabeaakiabg2da9maalaaabaGaaGymaaqaaiaa ikdacqaHapaCcaWGPbGaamOBaaaadaGadaabaeqabaGaamiramaaBa aaleaacaaIXaaabeaakmaadmaabaGaaGymaiabgkHiTiGacwgacaGG 4bGaaiiCamaabmaabaWaaSaaaeaacqGHsislcaaIYaGaeqiWdaNaam yAaiaad6gacaWGmbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaamiuaaaa aiaawIcacaGLPaaaaiaawUfacaGLDbaacqGHRaWkcaWGebWaaSbaaS qaaiaaikdaaeqaaOWaamWaaeaaciGGLbGaaiiEaiaacchadaqadaqa amaalaaabaGaeyOeI0IaaGOmaiabec8aWjaadMgacaWGUbGaamitam aaBaaaleaacaaIXaaabeaaaOqaaiaadcfaaaaacaGLOaGaayzkaaGa eyOeI0IaciyzaiaacIhacaGGWbWaaeWaaeaadaWcaaqaaiabgkHiTi aaikdacqaHapaCcaWGPbGaamOBaiaacIcacaWGmbWaaSbaaSqaaiaa igdaaeqaaOGaey4kaSIaamitamaaBaaaleaacaaIYaaabeaakiaacM caaeaacaWGqbaaaaGaayjkaiaawMcaaaGaay5waiaaw2faaiabgUca RaqaaiaadseadaWgaaWcbaGaaG4maaqabaGcdaWadaqaaiGacwgaca GG4bGaaiiCamaabmaabaWaaSaaaeaacqGHsislcaaIYaGaeqiWdaNa amyAaiaad6gacaGGOaGaamitamaaBaaaleaacaaIXaaabeaakiabgU caRiaadYeadaWgaaWcbaGaaGOmaaqabaGccaGGPaaabaGaamiuaaaa aiaawIcacaGLPaaacqGHsislciGGLbGaaiiEaiaacchadaqadaqaam aalaaabaGaeyOeI0IaaGOmaiabec8aWjaadMgacaWGUbGaaiikaiaa dYeadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGmbWaaSbaaSqaai aaikdaaeqaaOGaey4kaSIaamitamaaBaaaleaacaaIZaaabeaakiaa cMcaaeaacaWGqbaaaaGaayjkaiaawMcaaaGaay5waiaaw2faaaaaca GL7bGaayzFaaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGUbGa eyiyIKRaaGimaaqaaiaadAgadaWgaaWcbaGaaGimaaqabaGccqGH9a qpdaWcaaqaaiaadYeadaWgaaWcbaGaaGymaaqabaGccaWGebWaaSba aSqaaiaaigdaaeqaaOGaey4kaSIaamitamaaBaaaleaacaaIYaaabe aakiaadseadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWGmbWaaSba aSqaaiaaiodaaeqaaOGaamiramaaBaaaleaacaaIZaaabeaaaOqaai aadcfaaaGaeyypa0JaamiramaaBaaaleaacaWGHbGaamODaiaadwga caWGYbGaamyyaiaadEgacaWGLbaabeaakiaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caWGUbGaeyypa0JaaGimaaaaaa@6242@  It is important to know that our simple tri-level functions are adequately expressed for absolute values of n that are less than 50.

 

The first derivative of Ti (y) including the D term in equation 2 is:

D(y) d Τ i dy =D(y) 2πi P n= g n nexp( 2iπny P ) = n= f n exp( 2iπny P ) 2πi P n= g n nexp( 2iπny P ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadseacaGGOa GaamyEaiaacMcadaWcaaqaaiaadsgacqqHKoavdaWgaaWcbaGaamyA aaqabaaakeaacaWGKbGaamyEaaaacqGH9aqpcaWGebGaaiikaiaadM hacaGGPaWaaSaaaeaacaaIYaGaeqiWdaNaamyAaaqaaiaadcfaaaWa aabCaeaacaWGNbWaaSbaaSqaaiaad6gaaeqaaOGaamOBaiGacwgaca GG4bGaaiiCamaabmaabaWaaSaaaeaacaaIYaGaamyAaiabec8aWjaa d6gacaWG5baabaGaamiuaaaaaiaawIcacaGLPaaaaSqaaiaad6gacq GH9aqpcqGHsislcqGHEisPaeaacqGHEisPa0GaeyyeIuoakiabg2da 9maaqahabaGaamOzamaaBaaaleaacaWGUbaabeaakiGacwgacaGG4b GaaiiCamaabmaabaWaaSaaaeaacaaIYaGaamyAaiabec8aWjaad6ga caWG5baabaGaamiuaaaaaiaawIcacaGLPaaaaSqaaiaad6gacqGH9a qpcqGHsislcqGHEisPaeaacqGHEisPa0GaeyyeIuoakmaalaaabaGa aGOmaiabec8aWjaadMgaaeaacaWGqbaaamaaqahabaGaam4zamaaBa aaleaacaWGUbaabeaakiaad6gaciGGLbGaaiiEaiaacchadaqadaqa amaalaaabaGaaGOmaiaadMgacqaHapaCcaWGUbGaamyEaaqaaiaadc faaaaacaGLOaGaayzkaaaaleaacaWGUbGaeyypa0JaeyOeI0IaeyOh IukabaGaeyOhIukaniabggHiLdaaaa@8C92@

The final y derivative in equation 2 results in:

d dy ( D(y) d Τ i dy )= d T i dt = 4 π 2 P 2 [ n= f n nexp( 2iπny P ) n= g n nexp( 2iπny P ) + n= f n exp( 2iπny P ) n= g n n 2 exp( 2iπny P ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaWaaSaaae aacaWGKbaabaGaamizaiaadMhaaaWaaeWaaeaacaWGebGaaiikaiaa dMhacaGGPaWaaSaaaeaacaWGKbGaeuiPdq1aaSbaaSqaaiaadMgaae qaaaGcbaGaamizaiaadMhaaaaacaGLOaGaayzkaaGaeyypa0ZaaSaa aeaacaWGKbGaamivamaaBaaaleaacaWGPbaabeaaaOqaaiaadsgaca WG0baaaiabg2da9aqaamaalaaabaGaeyOeI0IaaGinaiabec8aWnaa CaaaleqabaGaaGOmaaaaaOqaaiaadcfadaahaaWcbeqaaiaaikdaaa aaaOWaamWaaeaadaaeWbqaaiaadAgadaWgaaWcbaGaamOBaaqabaGc caWGUbGaciyzaiaacIhacaGGWbWaaeWaaeaadaWcaaqaaiaaikdaca WGPbGaeqiWdaNaamOBaiaadMhaaeaacaWGqbaaaaGaayjkaiaawMca aaWcbaGaamOBaiabg2da9iabgkHiTiabg6HiLcqaaiabg6HiLcqdcq GHris5aOWaaabCaeaacaWGNbWaaSbaaSqaaiaad6gaaeqaaOGaamOB aiGacwgacaGG4bGaaiiCamaabmaabaWaaSaaaeaacaaIYaGaamyAai abec8aWjaad6gacaWG5baabaGaamiuaaaaaiaawIcacaGLPaaaaSqa aiaad6gacqGH9aqpcqGHsislcqGHEisPaeaacqGHEisPa0GaeyyeIu oakiabgUcaRmaaqahabaGaamOzamaaBaaaleaacaWGUbaabeaakiGa cwgacaGG4bGaaiiCamaabmaabaWaaSaaaeaacaaIYaGaamyAaiabec 8aWjaad6gacaWG5baabaGaamiuaaaaaiaawIcacaGLPaaaaSqaaiaa d6gacqGH9aqpcqGHsislcqGHEisPaeaacqGHEisPa0GaeyyeIuoakm aaqahabaGaam4zamaaBaaaleaacaWGUbaabeaakiaad6gadaahaaWc beqaaiaaikdaaaGcciGGLbGaaiiEaiaacchadaqadaqaamaalaaaba GaaGOmaiaadMgacqaHapaCcaWGUbGaamyEaaqaaiaadcfaaaaacaGL OaGaayzkaaaaleaacaWGUbGaeyypa0JaeyOeI0IaeyOhIukabaGaey OhIukaniabggHiLdaakiaawUfacaGLDbaaaaaa@A9E2@

This equation shows that a complicated function of y (the f terms) has taken the place of the previous constant eigenvalue.  We could use perturbation theory to determine the effects of the variation of D on the original eigenfunctions.  But that will be beyond the scope of this document.

 

Energy Distribution of a Gas

1. Standard Thermal Physics Treatment

            The Boltzmann probability law for particle height, in a gravity (or acceleration field), g, is:

N(E)= N 0 exp( E kT )=Nexp( m v 2 2kT ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6eacaGGOa GaamyraiaacMcacqGH9aqpcaWGobWaaSbaaSqaaiaaicdaaeqaaOGa ciyzaiaacIhacaGGWbWaaeWaaeaadaWcaaqaaiabgkHiTiaadweaae aacaWGRbGaamivaaaaaiaawIcacaGLPaaacqGH9aqpcaWGobGaciyz aiaacIhacaGGWbWaaeWaaeaadaWcaaqaaiabgkHiTiaad2gacaWG2b WaaWbaaSqabeaacaaIYaaaaaGcbaGaaGOmaiaadUgacaWGubaaaaGa ayjkaiaawMcaaaaa@503D@                                               (1)

where N0 is a normalization constant, m is the mass of the atom, k is Boltzmann's constant, v is the speed of the atom, and T is absolute temperature.  It is easy to show that the average value of E, <E>, or mv2/2 is equal to kT using the integral:

 

<E>= N 0 0 Eexp( E kT ) N 0 0 exp( E kT ) =kT MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgYda8iaadw eacqGH+aGpcqGH9aqpdaWcaaqaaiaad6eadaWgaaWcbaGaaGimaaqa baGcdaWdXbqaaiaadweaciGGLbGaaiiEaiaacchadaqadaqaamaala aabaGaeyOeI0IaamyraaqaaiaadUgacaWGubaaaaGaayjkaiaawMca aaWcbaGaaGimaaqaaiabg6HiLcqdcqGHRiI8aaGcbaGaamOtamaaBa aaleaacaaIWaaabeaakmaapehabaGaciyzaiaacIhacaGGWbWaaeWa aeaadaWcaaqaaiabgkHiTiaadweaaeaacaWGRbGaamivaaaaaiaawI cacaGLPaaaaSqaaiaaicdaaeaacqGHEisPa0Gaey4kIipaaaGccqGH 9aqpcaWGRbGaamivaaaa@5A1A@

Appendix

Particle-Particle Collisions of Different Mass and Velocity

            The following will prove that, via particle-particle collisions, energy always flows from more energetic particles to less energetic particles.  In order to have heat flow (thermal conductivity) from hotter (more energetic) regions to colder (less energetic) regions it is necessary that the previous statement be true.

            Here we will consider spherical particles which have the different masses, m1 and m2, and diameters, D1 and D2.  The centers of the spheres will be labeled (x1,y1,z1) and (x2,y2,z2).  Upon collision, the momentum transferred between the spheres will always be along the unit vector:

u= [ ( x 1 x 2 ) x ^ +( y 1 y 2 ) y ^ +( z 1 z 2 ) z ^ ] r 12 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahwhacqGH9a qpdaWcaaqaamaadmaabaGaaiikaiaadIhadaWgaaWcbaGaaGymaaqa baGccqGHsislcaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaiykaiqahI hagaqcaiabgUcaRiaacIcacaWG5bWaaSbaaSqaaiaaigdaaeqaaOGa eyOeI0IaamyEamaaBaaaleaacaaIYaaabeaakiaacMcaceWH5bGbaK aacqGHRaWkcaGGOaGaamOEamaaBaaaleaacaaIXaaabeaakiabgkHi TiaadQhadaWgaaWcbaGaaGOmaaqabaGccaGGPaGabCOEayaajaaaca GLBbGaayzxaaaabaGaamOCamaaBaaaleaacaaIXaGaaGOmaaqabaaa aaaa@53F4@                                                         (2)

where

r 12 = ( x 1 x 2 ) 2 + ( y 1 y 2 ) 2 + ( z 1 z 2 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhadaWgaa WcbaGaaGymaiaaikdaaeqaaOGaeyypa0ZaaOaaaeaacaGGOaGaamiE amaaBaaaleaacaaIXaaabeaakiabgkHiTiaadIhadaWgaaWcbaGaaG OmaaqabaGccaGGPaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaiik aiaadMhadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWG5bWaaSbaaS qaaiaaikdaaeqaaOGaaiykamaaCaaaleqabaGaaGOmaaaakiabgUca RiaacIcacaWG6bWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaamOEam aaBaaaleaacaaIYaaabeaakiaacMcadaahaaWcbeqaaiaaikdaaaaa beaaaaa@50A7@

is the distance between centers.  Since the animation is illustrated in only 2 dimensions, the collision analysis will assume a containing box that is large in the x and y dimensions but very thin in the z dimension.

The expression for the final momenta in terms of the initial momenta is:

m 1 v 1 ' + m 2 v 2 ' = m 1 v 1 + m 2 v 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaWgaa WcbaGaaGymaaqabaGccaWH2bWaa0baaSqaaiaaigdaaeaacaGGNaaa aOGaey4kaSIaamyBamaaBaaaleaacaaIYaaabeaakiaahAhadaqhaa WcbaGaaGOmaaqaaiaacEcaaaGccqGH9aqpcaWGTbWaaSbaaSqaaiaa igdaaeqaaOGaaCODamaaDaaaleaacaaIXaaabaaaaOGaey4kaSIaam yBamaaBaaaleaacaaIYaaabeaakiaahAhadaqhaaWcbaGaaGOmaaqa aaaaaaa@4955@                                                                              (3)

where the apostrophe on the left side of the equations indicates the final velocities.  We know that the energies are conserved so

m 1 v 1 '2 + m 2 v 2 '2 2 = m 1 v 1 2 + m 1 v 2 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam yBamaaBaaaleaacaaIXaaabeaakiaadAhadaqhaaWcbaGaaGymaaqa aiaacEcacaaIYaaaaOGaey4kaSIaamyBamaaBaaaleaacaaIYaaabe aakiaadAhadaqhaaWcbaGaaGOmaaqaaiaacEcacaaIYaaaaaGcbaGa aGOmaaaacqGH9aqpdaWcaaqaaiaad2gadaWgaaWcbaGaaGymaaqaba GccaWG2bWaa0baaSqaaiaaigdaaeaacaaIYaaaaOGaey4kaSIaamyB amaaBaaaleaacaaIXaaabeaakiaadAhadaqhaaWcbaGaaGOmaaqaai aaikdaaaaakeaacaaIYaaaaaaa@4DD6@                                                                             (4)

The directions of the change in momenta are along the vector of centers, u, and the values of the changes of momenta must be equal and opposite.

m 1 Δ v 1 =Mδvu= m 2 Δ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaWgaa WcbaGaaGymaaqabaGccaWHuoGaaCODamaaBaaaleaacaaIXaaabeaa kiabg2da9iaad2eacqaH0oazcaWG2bGaaCyDaiabg2da9iabgkHiTi aad2gadaWgaaWcbaGaaGOmaaqabaGccaWHuoGaaCODamaaBaaaleaa caaIYaaabeaaaaa@4732@                                                                     (5)

where M has units of mass and is still to be determined.  Then

m 1 v 1 ' = m 1 v 1 +Mδvu m 2 v 2 ' = m 2 v 2 Mδvu MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyBam aaBaaaleaacaaIXaaabeaakiaahAhadaqhaaWcbaGaaGymaaqaaiaa cEcaaaGccqGH9aqpcaWGTbWaaSbaaSqaaiaaigdaaeqaaOGaaCODam aaDaaaleaacaaIXaaabaaaaOGaey4kaSIaamytaiabes7aKjaadAha caWH1baabaGaamyBamaaBaaaleaacaaIYaaabeaakiaahAhadaqhaa WcbaGaaGOmaaqaaiaacEcaaaGccqGH9aqpcaWGTbWaaSbaaSqaaiaa ikdaaeqaaOGaaCODamaaDaaaleaacaaIYaaabaaaaOGaeyOeI0Iaam ytaiabes7aKjaadAhacaWH1baaaaa@5357@                                                                           (6)

Now we can use equation 6 in equation 4 to solve for the value of Mδv.

  ( m 1 v 1 +Mδvu)( m 1 v 1 +Mδvu) 2 m 1 + ( m 2 v 2 Mδvu)( m 2 v 2 Mδvu) 2 m 2 = m 1 v 1 2 + m 2 v 2 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaai ikaiaad2gadaWgaaWcbaGaaGymaaqabaGccaWH2bWaa0baaSqaaiaa igdaaeaaaaGccqGHRaWkcaWGnbGaeqiTdqMaamODaiaahwhacaGGPa GaeyOiGCRaaiikaiaad2gadaWgaaWcbaGaaGymaaqabaGccaWH2bWa a0baaSqaaiaaigdaaeaaaaGccqGHRaWkcaWGnbGaeqiTdqMaamODai aahwhacaGGPaaabaGaaGOmaiaad2gadaWgaaWcbaGaaGymaaqabaaa aOGaey4kaSYaaSaaaeaacaGGOaGaamyBamaaBaaaleaacaaIYaaabe aakiaahAhadaqhaaWcbaGaaGOmaaqaaaaakiabgkHiTiaad2eacqaH 0oazcaWG2bGaaCyDaiaacMcacqGHIaYTcaGGOaGaamyBamaaBaaale aacaaIYaaabeaakiaahAhadaqhaaWcbaGaaGOmaaqaaaaakiabgkHi Tiaad2eacqaH0oazcaWG2bGaaCyDaiaacMcaaeaacaaIYaGaamyBam aaBaaaleaacaaIYaaabeaaaaGccqGH9aqpdaWcaaqaaiaad2gadaWg aaWcbaGaaGymaaqabaGccaWG2bWaa0baaSqaaiaaigdaaeaacaaIYa aaaOGaey4kaSIaamyBamaaBaaaleaacaaIYaaabeaakiaadAhadaqh aaWcbaGaaGOmaaqaaiaaikdaaaaakeaacaaIYaaaaaaa@751A@  (7)

where the large dot stands for the dot product and equation 7 simplifies to:

(2 m 1 Mδvu v 1 + M 2 δ v 2 ) 2 m 1 + (2 m 2 Mδvu v 2 + M 2 δ v 2 ) 2 m 2 =0 M 2 δ v 2 ( 1 m 1 + 1 m 2 )+2δvM(u v 1 u v 2 )=0 Mδv= 2 m 1 m 2 u( v 2 v 1 ) m 1 + m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaWaaSaaae aacaGGOaGaaGOmaiaad2gadaWgaaWcbaGaaGymaaqabaGccaWGnbGa eqiTdqMaamODaiaahwhacqGHIaYTcaWH2bWaa0baaSqaaiaaigdaae aaaaGccqGHRaWkcaWGnbWaaWbaaSqabeaacaaIYaaaaOGaeqiTdqMa amODamaaCaaaleqabaGaaGOmaaaakiaacMcaaeaacaaIYaGaamyBam aaBaaaleaacaaIXaaabeaaaaGccqGHRaWkdaWcaaqaaiaacIcacqGH sislcaaIYaGaamyBamaaBaaaleaacaaIYaaabeaakiaad2eacqaH0o azcaWG2bGaaCyDaiabgkci3kaahAhadaqhaaWcbaGaaGOmaaqaaaaa kiabgUcaRiaad2eadaahaaWcbeqaaiaaikdaaaGccqaH0oazcaWG2b WaaWbaaSqabeaacaaIYaaaaOGaaiykaaqaaiaaikdacaWGTbWaaSba aSqaaiaaikdaaeqaaaaakiabg2da9iaaicdaaeaacaWGnbWaaWbaaS qabeaacaaIYaaaaOGaeqiTdqMaamODamaaCaaaleqabaGaaGOmaaaa kmaabmaabaWaaSaaaeaacaaIXaaabaGaamyBamaaBaaaleaacaaIXa aabeaaaaGccqGHRaWkdaWcaaqaaiaaigdaaeaacaWGTbWaaSbaaSqa aiaaikdaaeqaaaaaaOGaayjkaiaawMcaaiabgUcaRiaaikdacqaH0o azcaWG2bGaamytaiaacIcacaWH1bGaeyOiGCRaaCODamaaDaaaleaa caaIXaaabaaaaOGaeyOeI0IaaCyDaiabgkci3kaahAhadaqhaaWcba GaaGOmaaqaaaaakiaacMcacqGH9aqpcaaIWaaabaGaamytaiabes7a KjaadAhacqGH9aqpdaWcaaqaaiaaikdacaWGTbWaaSbaaSqaaiaaig daaeqaaOGaamyBamaaBaaaleaacaaIYaaabeaakiaahwhacqGHIaYT caGGOaGaaCODamaaDaaaleaacaaIYaaabaaaaOGaeyOeI0IaaCODam aaDaaaleaacaaIXaaabaaaaOGaaiykaaqaaiaad2gadaWgaaWcbaGa aGymaaqabaGccqGHRaWkcaWGTbWaaSbaaSqaaiaaikdaaeqaaaaaaa aa@9888@                                       (8)

We can now make the identification:

M= 2 m 1 m 2 m 1 + m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eacqGH9a qpdaWcaaqaaiaaikdacaWGTbWaaSbaaSqaaiaaigdaaeqaaOGaamyB amaaBaaaleaacaaIYaaabeaaaOqaaiaad2gadaWgaaWcbaGaaGymaa qabaGccqGHRaWkcaWGTbWaaSbaaSqaaiaaikdaaeqaaaaaaaa@40F5@                                                                            (9)

where M is known as the "reduced mass".

Equations 6 and 8 are a complete solution for the final momenta. The final velocities are computed by dividing both sides of equations 6 by their respective masses:

  v 1 ' = v 1 + 2 m 2 m 1 + m 2 u( v 2 v 1 )u v 2 ' = v 2 2 m 1 m 1 + m 2 u( v 2 v 1 )u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaaCODam aaDaaaleaacaaIXaaabaGaai4jaaaakiabg2da9iaahAhadaqhaaWc baGaaGymaaqaaaaakiabgUcaRmaalaaabaGaaGOmaiaad2gadaWgaa WcbaGaaGOmaaqabaaakeaacaWGTbWaaSbaaSqaaiaaigdaaeqaaOGa ey4kaSIaamyBamaaBaaaleaacaaIYaaabeaaaaGccaWH1bGaeyOiGC RaaiikaiaahAhadaqhaaWcbaGaaGOmaaqaaaaakiabgkHiTiaahAha daqhaaWcbaGaaGymaaqaaaaakiaacMcacaWH1baabaGaaCODamaaDa aaleaacaaIYaaabaGaai4jaaaakiabg2da9iaahAhadaqhaaWcbaGa aGOmaaqaaaaakiabgkHiTmaalaaabaGaaGOmaiaad2gadaWgaaWcba GaaGymaaqabaaakeaacaWGTbWaaSbaaSqaaiaaigdaaeqaaOGaey4k aSIaamyBamaaBaaaleaacaaIYaaabeaaaaGccaWH1bGaeyOiGCRaai ikaiaahAhadaqhaaWcbaGaaGOmaaqaaaaakiabgkHiTiaahAhadaqh aaWcbaGaaGymaaqaaaaakiaacMcacaWH1baaaaa@64EE@                                            (10)

Suppose m2>m1.  Then we see that the magnitude of the speed added to molecule 1 will be larger than the magnitude of  the speed removed from molecule 2.  We can easily see from equation 7  that, even though the averages of the dot products are zero,  that the collision results in an increased kinetic energy for molecule 1 and a decreased kinetic energy for molecule 2 because of the mass term in the denominators.  Rewriting equation 4 we have:

( m 1 v 1 +Mδvu)( m 1 v 1 +Mδvu) 2 m 1 + ( m 2 v 2 Mδvu)( m 2 v 2 Mδvu) 2 m 2 = m 1 v 1 2 + m 2 v 2 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaai ikaiaad2gadaWgaaWcbaGaaGymaaqabaGccaWH2bWaa0baaSqaaiaa igdaaeaaaaGccqGHRaWkcaWGnbGaeqiTdqMaamODaiaahwhacaGGPa GaeyOiGCRaaiikaiaad2gadaWgaaWcbaGaaGymaaqabaGccaWH2bWa a0baaSqaaiaaigdaaeaaaaGccqGHRaWkcaWGnbGaeqiTdqMaamODai aahwhacaGGPaaabaGaaGOmaiaad2gadaWgaaWcbaGaaGymaaqabaaa aOGaey4kaSYaaSaaaeaacaGGOaGaamyBamaaBaaaleaacaaIYaaabe aakiaahAhadaqhaaWcbaGaaGOmaaqaaaaakiabgkHiTiaad2eacqaH 0oazcaWG2bGaaCyDaiaacMcacqGHIaYTcaGGOaGaamyBamaaBaaale aacaaIYaaabeaakiaahAhadaqhaaWcbaGaaGOmaaqaaaaakiabgkHi Tiaad2eacqaH0oazcaWG2bGaaCyDaiaacMcaaeaacaaIYaGaamyBam aaBaaaleaacaaIYaaabeaaaaGccqGH9aqpdaWcaaqaaiaad2gadaWg aaWcbaGaaGymaaqabaGccaWG2bWaa0baaSqaaiaaigdaaeaacaaIYa aaaOGaey4kaSIaamyBamaaBaaaleaacaaIYaaabeaakiaadAhadaqh aaWcbaGaaGOmaaqaaiaaikdaaaaakeaacaaIYaaaaaaa@751A@  (11)

If the initial speeds are the same then the only difference between E1 and E2 is due to the M2 term in the kinetic energies.

Δ E 1 Δ E 2 = M 2 δ v 2 ( 1 2 m 1 1 2 m 2 )>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejaadw eadaWgaaWcbaGaaGymaaqabaGccqGHsislcqqHuoarcaWGfbWaaSba aSqaaiaaikdaaeqaaOGaeyypa0JaamytamaaCaaaleqabaGaaGOmaa aakiabes7aKjaadAhadaahaaWcbeqaaiaaikdaaaGcdaqadaqaamaa laaabaGaaGymaaqaaiaaikdacaWGTbWaaSbaaSqaaiaaigdaaeqaaa aakiabgkHiTmaalaaabaGaaGymaaqaaiaaikdacaWGTbWaaSbaaSqa aiaaikdaaeqaaaaaaOGaayjkaiaawMcaaiabg6da+iaaicdaaaa@4E86@                          (same speeds)

If the speeds are different, say v2>v1, but the masses are the same, then the difference in kinetic energies is due to the Mm term in the kinetic energies:

Δ E 1 Δ E 2 = m 2 [u( v 2 v 1 )u( v 1 + v 2 )]= m 2 [ (u v 2 ) 2 (u v 1 ) 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejaadw eadaWgaaWcbaGaaGymaaqabaGccqGHsislcqqHuoarcaWGfbWaaSba aSqaaiaaikdaaeqaaOGaeyypa0ZaaSaaaeaacaWGTbaabaGaaGOmaa aacaGGBbGaaCyDaiabgkci3kaacIcacaWH2bWaaSbaaSqaaiaaikda aeqaaOGaeyOeI0IaaCODamaaBaaaleaacaaIXaaabeaakiaacMcaca WH1bGaeyOiGCRaaiikaiaahAhadaWgaaWcbaGaaCymaaqabaGccqGH RaWkcaWH2bWaaSbaaSqaaiaahkdaaeqaaOGaaiykaiaac2facqGH9a qpdaWcaaqaaiaad2gaaeaacaaIYaaaaiaacUfacaGGOaGaaCyDaiab gkci3kaahAhadaWgaaWcbaGaaGOmaaqabaGccaGGPaWaaWbaaSqabe aacaaIYaaaaOGaeyOeI0IaaiikaiaahwhacqGHIaYTcaWH2bWaaSba aSqaaiaaigdaaeqaaOGaaiykamaaCaaaleqabaGaaGOmaaaakiaac2 faaaa@65D6@

The above equation can be re-written:

Δ E 1 Δ E 2 = m 2 [ v 2 2 cos 2 ( θ u2 ) v 1 2 cos 2 ( θ u1 )] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejaadw eadaWgaaWcbaGaaGymaaqabaGccqGHsislcqqHuoarcaWGfbWaaSba aSqaaiaaikdaaeqaaOGaeyypa0ZaaSaaaeaacaWGTbaabaGaaGOmaa aacaGGBbGaamODamaaDaaaleaacaaIYaaabaGaaGOmaaaakiGacoga caGGVbGaai4CamaaCaaaleqabaGaaGOmaaaakiaacIcacqaH4oqCda WgaaWcbaGaamyDaiaaikdaaeqaaOGaaiykaiabgkHiTiaadAhadaqh aaWcbaGaaGymaaqaaiaaikdaaaGcciGGJbGaai4Baiaacohadaahaa WcbeqaaiaaikdaaaGccaGGOaGaeqiUde3aaSbaaSqaaiaadwhacaaI XaaabeaakiaacMcacaGGDbaaaa@5960@

where

cos( θ ui )= u v i v i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGacogacaGGVb Gaai4CaiaacIcacqaH4oqCdaWgaaWcbaGaamyDaiaadMgaaeqaaOGa aiykaiabg2da9maalaaabaGaaCyDaiabgkci3kaahAhadaWgaaWcba GaaCyAaaqabaaakeaacaWG2bWaaSbaaSqaaiaadMgaaeqaaaaaaaa@45C0@

is the cosine of the angle between vi and u.  The average value over all possible angles between vi and u of the cosine squared terms is 1/2 so we can write

<Δ E 1 Δ E 2 >= m 4 [ v 2 2 v 1 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgYda8iabfs 5aejaadweadaWgaaWcbaGaaGymaaqabaGccqGHsislcqqHuoarcaWG fbWaaSbaaSqaaiaaikdaaeqaaOGaeyOpa4Jaeyypa0ZaaSaaaeaaca WGTbaabaGaaGinaaaacaGGBbGaamODamaaDaaaleaacaaIYaaabaGa aGOmaaaakiabgkHiTiaadAhadaqhaaWcbaGaaGymaaqaaiaaikdaaa GccaGGDbaaaa@49ED@                                                      (same masses)

 

Therefore, averaged over all possible angles between u and v, the change of kinetic energy for particle 1 will be positive since v2>v1.

This degradation of the energy of the larger mass or higher speed atoms and/or speed leads to what is called the zeroth law of thermodynamics-all energy distributions tend to be become equalized.  An example of this would be two gases of different molecular masses as well as different temperatures injected into an insulated box.  The gas temperatures (or average energies) will equalize leaving the average speed of the gas with more massive molecules less than that of the gas with less massive molecules but the energies will tend to become equal due to the energy Vs velocity law we just proved.

Again rewriting equation 4 we have:

           

( m 1 v 1 +Mδvu)( m 1 v 1 +Mδvu) 2 m 1 + ( m 2 v 2 Mδvu)( m 2 v 2 Mδvu) 2 m 2 = m 1 v 1 2 + m 2 v 2 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaai ikaiaad2gadaWgaaWcbaGaaGymaaqabaGccaWH2bWaa0baaSqaaiaa igdaaeaaaaGccqGHRaWkcaWGnbGaeqiTdqMaamODaiaahwhacaGGPa GaeyOiGCRaaiikaiaad2gadaWgaaWcbaGaaGymaaqabaGccaWH2bWa a0baaSqaaiaaigdaaeaaaaGccqGHRaWkcaWGnbGaeqiTdqMaamODai aahwhacaGGPaaabaGaaGOmaiaad2gadaWgaaWcbaGaaGymaaqabaaa aOGaey4kaSYaaSaaaeaacaGGOaGaamyBamaaBaaaleaacaaIYaaabe aakiaahAhadaqhaaWcbaGaaGOmaaqaaaaakiabgkHiTiaad2eacqaH 0oazcaWG2bGaaCyDaiaacMcacqGHIaYTcaGGOaGaamyBamaaBaaale aacaaIYaaabeaakiaahAhadaqhaaWcbaGaaGOmaaqaaaaakiabgkHi Tiaad2eacqaH0oazcaWG2bGaaCyDaiaacMcaaeaacaaIYaGaamyBam aaBaaaleaacaaIYaaabeaaaaGccqGH9aqpdaWcaaqaaiaad2gadaWg aaWcbaGaaGymaaqabaGccaWG2bWaa0baaSqaaiaaigdaaeaacaaIYa aaaOGaey4kaSIaamyBamaaBaaaleaacaaIYaaabeaakiaadAhadaqh aaWcbaGaaGOmaaqaaiaaikdaaaaakeaacaaIYaaaaaaa@751A@  (12)

Let's compute the E1 and E2 for the general case where both m and v are different.

E 1 '= ( m 1 v 1 +Mδvu)( m 1 v 1 +Mδvu) 2 m 1 = E 1 +Mδv(u v 1 )+ M 2 δ v 2 2 m 1 E 2 '= ( m 2 v 2 Mδvu)( m 2 v 2 Mδvu) 2 m 2 = E 2 Mδv(u v 2 )+ M 2 δ v 2 2 m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyram aaBaaaleaacaaIXaaabeaakiaacEcacqGH9aqpdaWcaaqaaiaacIca caWGTbWaaSbaaSqaaiaaigdaaeqaaOGaaCODamaaDaaaleaacaaIXa aabaaaaOGaey4kaSIaamytaiabes7aKjaadAhacaWH1bGaaiykaiab gkci3kaacIcacaWGTbWaaSbaaSqaaiaaigdaaeqaaOGaaCODamaaDa aaleaacaaIXaaabaaaaOGaey4kaSIaamytaiabes7aKjaadAhacaWH 1bGaaiykaaqaaiaaikdacaWGTbWaaSbaaSqaaiaaigdaaeqaaaaaki abg2da9iaadweadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGnbGa eqiTdqMaamODaiaacIcacaWH1bGaeyOiGCRaaCODamaaBaaaleaaca WHXaaabeaakiaacMcacqGHRaWkdaWcaaqaaiaad2eadaahaaWcbeqa aiaaikdaaaGccqaH0oazcaWG2bWaaWbaaSqabeaacaaIYaaaaaGcba GaaGOmaiaad2gadaWgaaWcbaGaaGymaaqabaaaaaGcbaGaamyramaa BaaaleaacaaIYaaabeaakiaacEcacqGH9aqpdaWcaaqaaiaacIcaca WGTbWaaSbaaSqaaiaaikdaaeqaaOGaaCODamaaDaaaleaacaaIYaaa baaaaOGaeyOeI0Iaamytaiabes7aKjaadAhacaWH1bGaaiykaiabgk ci3kaacIcacaWGTbWaaSbaaSqaaiaaikdaaeqaaOGaaCODamaaDaaa leaacaaIYaaabaaaaOGaeyOeI0Iaamytaiabes7aKjaadAhacaWH1b GaaiykaaqaaiaaikdacaWGTbWaaSbaaSqaaiaaikdaaeqaaaaakiab g2da9iaadweadaWgaaWcbaGaaGOmaaqabaGccqGHsislcaWGnbGaeq iTdqMaamODaiaacIcacaWH1bGaeyOiGCRaaCODamaaBaaaleaacaaI YaaabeaakiaacMcacqGHRaWkdaWcaaqaaiaad2eadaahaaWcbeqaai aaikdaaaGccqaH0oazcaWG2bWaaWbaaSqabeaacaaIYaaaaaGcbaGa aGOmaiaad2gadaWgaaWcbaGaaGOmaaqabaaaaaaaaa@9AE1@             (13)

Inserting the expression for Mδv we have:

E 1 '= E 1 +Mu( v 2 v 1 )(u v 1 )+ M 2 δ v 2 2 m 1 = E 1 +M[(u v 2 )(u v 1 ) (u v 1 ) 2 ]+ M 2 δ v 2 2 m 1 E 2 '= E 2 Mu( v 2 v 1 )(u v 2 )+ M 2 δ v 2 2 m 2 = E 2 M[ (u v 2 ) 2 (u v 1 )(u v 2 )]+ M 2 δ v 2 2 m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyram aaBaaaleaacaaIXaaabeaakiaacEcacqGH9aqpcaWGfbWaaSbaaSqa aiaaigdaaeqaaOGaey4kaSIaamytaiaahwhacqGHIaYTcaGGOaGaaC ODamaaDaaaleaacaaIYaaabaaaaOGaeyOeI0IaaCODamaaDaaaleaa caaIXaaabaaaaOGaaiykaiaacIcacaWH1bGaeyOiGCRaaCODamaaBa aaleaacaWHXaaabeaakiaacMcacqGHRaWkdaWcaaqaaiaad2eadaah aaWcbeqaaiaaikdaaaGccqaH0oazcaWG2bWaaWbaaSqabeaacaaIYa aaaaGcbaGaaGOmaiaad2gadaWgaaWcbaGaaGymaaqabaaaaOGaeyyp a0JaamyramaaBaaaleaacaaIXaaabeaakiabgUcaRiaad2eacaGGBb GaaiikaiaahwhacqGHIaYTcaWH2bWaa0baaSqaaiaaikdaaeaaaaGc caGGPaGaaiikaiaahwhacqGHIaYTcaWH2bWaa0baaSqaaiaaigdaae aaaaGccaGGPaGaeyOeI0IaaiikaiaahwhacqGHIaYTcaWH2bWaa0ba aSqaaiaaigdaaeaaaaGccaGGPaWaaWbaaSqabeaacaaIYaaaaOGaai yxaiabgUcaRmaalaaabaGaamytamaaCaaaleqabaGaaGOmaaaakiab es7aKjaadAhadaahaaWcbeqaaiaaikdaaaaakeaacaaIYaGaamyBam aaBaaaleaacaaIXaaabeaaaaaakeaacaWGfbWaaSbaaSqaaiaaikda aeqaaOGaai4jaiabg2da9iaadweadaWgaaWcbaGaaGOmaaqabaGccq GHsislcaWGnbGaaCyDaiabgkci3kaacIcacaWH2bWaa0baaSqaaiaa ikdaaeaaaaGccqGHsislcaWH2bWaa0baaSqaaiaaigdaaeaaaaGcca GGPaGaaiikaiaahwhacqGHIaYTcaWH2bWaaSbaaSqaaiaaikdaaeqa aOGaaiykaiabgUcaRmaalaaabaGaamytamaaCaaaleqabaGaaGOmaa aakiabes7aKjaadAhadaahaaWcbeqaaiaaikdaaaaakeaacaaIYaGa amyBamaaBaaaleaacaaIYaaabeaaaaGccqGH9aqpcaWGfbWaaSbaaS qaaiaaikdaaeqaaOGaeyOeI0IaamytaiaacUfacaGGOaGaaCyDaiab gkci3kaahAhadaqhaaWcbaGaaGOmaaqaaaaakiaacMcadaahaaWcbe qaaiaaikdaaaGccqGHsislcaGGOaGaaCyDaiabgkci3kaahAhadaqh aaWcbaGaaGymaaqaaaaakiaacMcacaGGOaGaaCyDaiabgkci3kaahA hadaqhaaWcbaGaaGOmaaqaaaaakiaacMcacaGGDbGaey4kaSYaaSaa aeaacaWGnbWaaWbaaSqabeaacaaIYaaaaOGaeqiTdqMaamODamaaCa aaleqabaGaaGOmaaaaaOqaaiaaikdacaWGTbWaaSbaaSqaaiaaikda aeqaaaaaaaaa@B748@  (14)

 

Rewriting equation 14 where I've explicitly given the expression for δv we have:

E 1 '= E 1 +M[(u v ^ 2 )(u v ^ 1 ) v 1 v 2 (u v ^ 1 ) 2 v 1 2 ]+ M 2 [ v 2 2 (u v ^ 2 ) 2 2 v 1 v 2 (u v ^ 2 )(u v ^ 2 )+ v 1 2 (u v ^ 1 ) 2 ] 2 m 1 E 2 '= E 2 M[ (u v ^ 2 ) 2 v 2 2 (u v ^ 1 )(u v ^ 2 ) v 1 v 2 ]+ M 2 [ v 2 2 (u v ^ 2 ) 2 2 v 1 v 2 (u v ^ 2 )(u v ^ 2 )+ v 1 2 (u v ^ 1 ) 2 ] 2 m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyram aaBaaaleaacaaIXaaabeaakiaacEcacqGH9aqpcaWGfbWaaSbaaSqa aiaaigdaaeqaaOGaey4kaSIaamytaiaacUfacaGGOaGaaCyDaiabgk ci3kqahAhagaqcamaaDaaaleaacaaIYaaabaaaaOGaaiykaiaacIca caWH1bGaeyOiGCRabCODayaajaWaa0baaSqaaiaaigdaaeaaaaGcca GGPaGaamODamaaBaaaleaacaaIXaaabeaakiaadAhadaWgaaWcbaGa aGOmaaqabaGccqGHsislcaGGOaGaaCyDaiabgkci3kqahAhagaqcam aaDaaaleaacaaIXaaabaaaaOGaaiykamaaCaaaleqabaGaaGOmaaaa kiaadAhadaqhaaWcbaGaaGymaaqaaiaaikdaaaGccaGGDbGaey4kaS YaaSaaaeaacaWGnbWaaWbaaSqabeaacaaIYaaaaOGaai4waiaadAha daqhaaWcbaGaaGOmaaqaaiaaikdaaaGccaGGOaGaaCyDaiabgkci3k qahAhagaqcamaaDaaaleaacaaIYaaabaaaaOGaaiykamaaCaaaleqa baGaaGOmaaaakiabgkHiTiaaikdacaWG2bWaaSbaaSqaaiaaigdaae qaaOGaamODamaaBaaaleaacaaIYaaabeaakiaacIcacaWH1bGaeyOi GCRabCODayaajaWaa0baaSqaaiaaikdaaeaaaaGccaGGPaGaaiikai aahwhacqGHIaYTceWH2bGbaKaadaqhaaWcbaGaaGOmaaqaaaaakiaa cMcacqGHRaWkcaWG2bWaa0baaSqaaiaaigdaaeaacaaIYaaaaOGaai ikaiaahwhacqGHIaYTceWH2bGbaKaadaqhaaWcbaGaaGymaaqaaaaa kiaacMcadaahaaWcbeqaaiaaikdaaaGccaGGDbaabaGaaGOmaiaad2 gadaWgaaWcbaGaaGymaaqabaaaaaGcbaGaamyramaaBaaaleaacaaI YaaabeaakiaacEcacqGH9aqpcaWGfbWaaSbaaSqaaiaaikdaaeqaaO GaeyOeI0IaamytaiaacUfacaGGOaGaaCyDaiabgkci3kqahAhagaqc amaaDaaaleaacaaIYaaabaaaaOGaaiykamaaCaaaleqabaGaaGOmaa aakiaadAhadaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccqGHsislcaGG OaGaaCyDaiabgkci3kqahAhagaqcamaaDaaaleaacaaIXaaabaaaaO GaaiykaiaacIcacaWH1bGaeyOiGCRabCODayaajaWaa0baaSqaaiaa ikdaaeaaaaGccaGGPaGaamODamaaBaaaleaacaaIXaaabeaakiaadA hadaWgaaWcbaGaaGOmaaqabaGccaGGDbGaey4kaSYaaSaaaeaacaWG nbWaaWbaaSqabeaacaaIYaaaaOGaai4waiaadAhadaqhaaWcbaGaaG OmaaqaaiaaikdaaaGccaGGOaGaaCyDaiabgkci3kqahAhagaqcamaa DaaaleaacaaIYaaabaaaaOGaaiykamaaCaaaleqabaGaaGOmaaaaki abgkHiTiaaikdacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaamODamaa BaaaleaacaaIYaaabeaakiaacIcacaWH1bGaeyOiGCRabCODayaaja Waa0baaSqaaiaaikdaaeaaaaGccaGGPaGaaiikaiaahwhacqGHIaYT ceWH2bGbaKaadaqhaaWcbaGaaGOmaaqaaaaakiaacMcacqGHRaWkca WG2bWaa0baaSqaaiaaigdaaeaacaaIYaaaaOGaaiikaiaahwhacqGH IaYTceWH2bGbaKaadaqhaaWcbaGaaGymaaqaaaaakiaacMcadaahaa WcbeqaaiaaikdaaaGccaGGDbaabaGaaGOmaiaad2gadaWgaaWcbaGa aGOmaaqabaaaaaaaaa@D376@

where v1 and v2 with the carats over them are unit vectors in the direction of v1 and v2, respectively.  Their dot products with u are just the cosine of the angle between them and u and will be denoted c1 and c2.

E 1 '= E 1 +M[( c 1 c 2 v 1 v 2 c 1 2 v 1 2 ]+ M 2 [ v 2 2 c 2 2 2 v 1 v 2 c 1 c 2 + v 1 2 c 1 2 ] 2 m 1 E 2 '= E 2 M[ c 2 2 v 2 2 c 1 c 2 v 1 v 2 ]+ M 2 M 2 [ v 2 2 c 2 2 2 v 1 v 2 c 1 c 2 + v 1 2 c 1 2 ] 2 m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyram aaBaaaleaacaaIXaaabeaakiaacEcacqGH9aqpcaWGfbWaaSbaaSqa aiaaigdaaeqaaOGaey4kaSIaamytaiaacUfacaGGOaGaam4yamaaBa aaleaacaaIXaaabeaakiaadogadaWgaaWcbaGaaGOmaaqabaGccaWG 2bWaaSbaaSqaaiaaigdaaeqaaOGaamODamaaBaaaleaacaaIYaaabe aakiabgkHiTiaadogadaqhaaWcbaGaaGymaaqaaiaaikdaaaGccaWG 2bWaa0baaSqaaiaaigdaaeaacaaIYaaaaOGaaiyxaiabgUcaRmaala aabaGaamytamaaCaaaleqabaGaaGOmaaaakiaacUfacaWG2bWaa0ba aSqaaiaaikdaaeaacaaIYaaaaOGaam4yamaaDaaaleaacaaIYaaaba GaaGOmaaaakiabgkHiTiaaikdacaWG2bWaaSbaaSqaaiaaigdaaeqa aOGaamODamaaBaaaleaacaaIYaaabeaakiaadogadaWgaaWcbaGaaG ymaaqabaGccaWGJbWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamOD amaaDaaaleaacaaIXaaabaGaaGOmaaaakiaadogadaqhaaWcbaGaaG ymaaqaaiaaikdaaaGccaGGDbaabaGaaGOmaiaad2gadaWgaaWcbaGa aGymaaqabaaaaaGcbaGaamyramaaBaaaleaacaaIYaaabeaakiaacE cacqGH9aqpcaWGfbWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0Iaamyt aiaacUfacaWGJbWaa0baaSqaaiaaikdaaeaacaaIYaaaaOGaamODam aaDaaaleaacaaIYaaabaGaaGOmaaaakiabgkHiTiaadogadaWgaaWc baGaaGymaaqabaGccaWGJbWaaSbaaSqaaiaaikdaaeqaaOGaamODam aaBaaaleaacaaIXaaabeaakiaadAhadaWgaaWcbaGaaGOmaaqabaGc caGGDbGaey4kaSYaaSaaaeaacaWGnbWaaWbaaSqabeaacaaIYaaaaO GaamytamaaCaaaleqabaGaaGOmaaaakiaacUfacaWG2bWaa0baaSqa aiaaikdaaeaacaaIYaaaaOGaam4yamaaDaaaleaacaaIYaaabaGaaG OmaaaakiabgkHiTiaaikdacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGa amODamaaBaaaleaacaaIYaaabeaakiaadogadaWgaaWcbaGaaGymaa qabaGccaWGJbWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamODamaa DaaaleaacaaIXaaabaGaaGOmaaaakiaadogadaqhaaWcbaGaaGymaa qaaiaaikdaaaGccaGGDbaabaGaaGOmaiaad2gadaWgaaWcbaGaaGOm aaqabaaaaaaaaa@9C69@                                  (15)

            It's clear that, over many collisions, the c1c2 terms average to zero.   

Then the following expression for the average change of the energies per collision will be valid

< E 1 ' E 1 >=M( M[ v 2 2 c 2 2 + v 1 2 c 1 2 ] 2 m 1 c 1 2 v 1 2 ) < E 2 ' E 2 >=M( M[ v 2 2 c 2 2 + v 1 2 c 1 2 ] 2 m 2 c 2 2 v 2 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeyipaW JaamyramaaBaaaleaacaaIXaaabeaakiaacEcacqGHsislcaWGfbWa aSbaaSqaaiaaigdaaeqaaOGaeyOpa4Jaeyypa0Jaamytamaabmaaba WaaSaaaeaacaWGnbGaai4waiaadAhadaqhaaWcbaGaaGOmaaqaaiaa ikdaaaGccaWGJbWaa0baaSqaaiaaikdaaeaacaaIYaaaaOGaey4kaS IaamODamaaDaaaleaacaaIXaaabaGaaGOmaaaakiaadogadaqhaaWc baGaaGymaaqaaiaaikdaaaGccaGGDbaabaGaaGOmaiaad2gadaWgaa WcbaGaaGymaaqabaaaaOGaeyOeI0Iaam4yamaaDaaaleaacaaIXaaa baGaaGOmaaaakiaadAhadaqhaaWcbaGaaGymaaqaaiaaikdaaaaaki aawIcacaGLPaaaaeaacqGH8aapcaWGfbWaaSbaaSqaaiaaikdaaeqa aOGaai4jaiabgkHiTiaadweadaWgaaWcbaGaaGOmaaqabaGccqGH+a GpcqGH9aqpcaWGnbWaaeWaaeaadaWcaaqaaiaad2eacaGGBbGaamOD amaaDaaaleaacaaIYaaabaGaaGOmaaaakiaadogadaqhaaWcbaGaaG OmaaqaaiaaikdaaaGccqGHRaWkcaWG2bWaa0baaSqaaiaaigdaaeaa caaIYaaaaOGaam4yamaaDaaaleaacaaIXaaabaGaaGOmaaaakiaac2 faaeaacaaIYaGaamyBamaaBaaaleaacaaIYaaabeaaaaGccqGHsisl caWGJbWaa0baaSqaaiaaikdaaeaacaaIYaaaaOGaamODamaaDaaale aacaaIYaaabaGaaGOmaaaaaOGaayjkaiaawMcaaaaaaa@788B@                                                     (16)

Note that

            M 2 m 1 = m 2 ( m 1 + m 2 ) M 2 2 m 2 = m 1 ( m 1 + m 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaWaaSaaae aacaWGnbaabaGaaGOmaiaad2gadaWgaaWcbaGaaGymaaqabaaaaOGa eyypa0ZaaSaaaeaacaWGTbWaa0baaSqaaiaaikdaaeaaaaaakeaaca GGOaGaamyBamaaBaaaleaacaaIXaaabeaakiabgUcaRiaad2gadaWg aaWcbaGaaGOmaaqabaGccaGGPaWaaWbaaSqabeaaaaaaaaGcbaWaaS aaaeaacaWGnbWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGOmaiaad2ga daWgaaWcbaGaaGOmaaqabaaaaOGaeyypa0ZaaSaaaeaacaWGTbWaaS baaSqaaiaaigdaaeqaaaGcbaGaaiikaiaad2gadaWgaaWcbaGaaGym aaqabaGccqGHRaWkcaWGTbWaaSbaaSqaaiaaikdaaeqaaOGaaiykaa aaaaaa@5017@                                                                    

< E 1 ' E 1 >=M( m 2 [ v 2 2 c 2 2 + v 1 2 c 1 2 ] m 1 + m 2 c 1 2 v 1 2 ) < E 2 ' E 2 >=M( m 1 [ v 2 2 c 2 3 + v 1 2 c 1 2 ] m 1 + m 2 c 2 2 v 2 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeyipaW JaamyramaaBaaaleaacaaIXaaabeaakiaacEcacqGHsislcaWGfbWa aSbaaSqaaiaaigdaaeqaaOGaeyOpa4Jaeyypa0Jaamytamaabmaaba WaaSaaaeaacaWGTbWaaSbaaSqaaiaaikdaaeqaaOGaai4waiaadAha daqhaaWcbaGaaGOmaaqaaiaaikdaaaGccaWGJbWaa0baaSqaaiaaik daaeaacaaIYaaaaOGaey4kaSIaamODamaaDaaaleaacaaIXaaabaGa aGOmaaaakiaadogadaqhaaWcbaGaaGymaaqaaiaaikdaaaGccaGGDb aabaGaamyBamaaBaaaleaacaaIXaaabeaakiabgUcaRiaad2gadaWg aaWcbaGaaGOmaaqabaaaaOGaeyOeI0Iaam4yamaaDaaaleaacaaIXa aabaGaaGOmaaaakiaadAhadaqhaaWcbaGaaGymaaqaaiaaikdaaaaa kiaawIcacaGLPaaaaeaacqGH8aapcaWGfbWaaSbaaSqaaiaaikdaae qaaOGaai4jaiabgkHiTiaadweadaWgaaWcbaGaaGOmaaqabaGccqGH +aGpcqGH9aqpcaWGnbWaaeWaaeaadaWcaaqaaiaad2gadaWgaaWcba GaaGymaaqabaGccaGGBbGaamODamaaDaaaleaacaaIYaaabaGaaGOm aaaakiaadogadaqhaaWcbaGaaGOmaaqaaiaaiodaaaGccqGHRaWkca WG2bWaa0baaSqaaiaaigdaaeaacaaIYaaaaOGaam4yamaaDaaaleaa caaIXaaabaGaaGOmaaaakiaac2faaeaacaWGTbWaaSbaaSqaaiaaig daaeqaaOGaey4kaSIaamyBamaaBaaaleaacaaIYaaabeaaaaGccqGH sislcaWGJbWaa0baaSqaaiaaikdaaeaacaaIYaaaaOGaamODamaaDa aaleaacaaIYaaabaGaaGOmaaaaaOGaayjkaiaawMcaaaaaaa@7EC2@                                                     (17)

< E 1 ' E 1 >= M m 1 + m 2 ( m 2 [ v 2 2 c 2 2 + v 1 2 c 1 2 ]( m 1 + m 2 ) c 1 2 v 1 2 )= M m 1 + m 2 [ m 2 v 2 2 c 2 2 m 1 v 1 2 c 1 2 ] < E 2 ' E 2 >= M m 1 + m 2 ( m 1 [ v 2 2 c 2 2 + v 1 2 c 1 2 ]( m 1 + m 2 ) c 2 2 v 2 2 )= M m 1 + m 2 [ m 1 v 1 2 c 1 2 m 2 v 2 2 c 2 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeyipaW JaamyramaaBaaaleaacaaIXaaabeaakiaacEcacqGHsislcaWGfbWa aSbaaSqaaiaaigdaaeqaaOGaeyOpa4JaaGPaVlabg2da9maalaaaba Gaamytaaqaaiaad2gadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWG TbWaaSbaaSqaaiaaikdaaeqaaaaakmaabmaabaGaamyBamaaBaaale aacaaIYaaabeaakiaacUfacaWG2bWaa0baaSqaaiaaikdaaeaacaaI YaaaaOGaam4yamaaDaaaleaacaaIYaaabaGaaGOmaaaakiabgUcaRi aadAhadaqhaaWcbaGaaGymaaqaaiaaikdaaaGccaWGJbWaa0baaSqa aiaaigdaaeaacaaIYaaaaOGaaiyxaiabgkHiTiaacIcacaWGTbWaaS baaSqaaiaaigdaaeqaaOGaey4kaSIaamyBamaaBaaaleaacaaIYaaa beaakiaacMcacaWGJbWaa0baaSqaaiaaigdaaeaacaaIYaaaaOGaam ODamaaDaaaleaacaaIXaaabaGaaGOmaaaaaOGaayjkaiaawMcaaiab g2da9maalaaabaGaamytaaqaaiaad2gadaWgaaWcbaGaaGymaaqaba GccqGHRaWkcaWGTbWaaSbaaSqaaiaaikdaaeqaaaaakiaacUfacaWG TbWaaSbaaSqaaiaaikdaaeqaaOGaamODamaaDaaaleaacaaIYaaaba GaaGOmaaaakiaadogadaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccqGH sislcaWGTbWaaSbaaSqaaiaaigdaaeqaaOGaamODamaaDaaaleaaca aIXaaabaGaaGOmaaaakiaadogadaqhaaWcbaGaaGymaaqaaiaaikda aaGccaGGDbaabaGaeyipaWJaamyramaaBaaaleaacaaIYaaabeaaki aacEcacqGHsislcaWGfbWaaSbaaSqaaiaaikdaaeqaaOGaeyOpa4Ja aGPaVlabg2da9maalaaabaGaamytaaqaaiaad2gadaWgaaWcbaGaaG ymaaqabaGccqGHRaWkcaWGTbWaaSbaaSqaaiaaikdaaeqaaaaakmaa bmaabaGaamyBamaaBaaaleaacaaIXaaabeaakiaacUfacaWG2bWaa0 baaSqaaiaaikdaaeaacaaIYaaaaOGaam4yamaaDaaaleaacaaIYaaa baGaaGOmaaaakiabgUcaRiaadAhadaqhaaWcbaGaaGymaaqaaiaaik daaaGccaWGJbWaa0baaSqaaiaaigdaaeaacaaIYaaaaOGaaiyxaiab gkHiTiaacIcacaWGTbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaam yBamaaBaaaleaacaaIYaaabeaakiaacMcacaWGJbWaa0baaSqaaiaa ikdaaeaacaaIYaaaaOGaamODamaaDaaaleaacaaIYaaabaGaaGOmaa aaaOGaayjkaiaawMcaaiabg2da9maalaaabaGaamytaaqaaiaad2ga daWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGTbWaaSbaaSqaaiaaik daaeqaaaaakiaacUfacaWGTbWaaSbaaSqaaiaaigdaaeqaaOGaamOD amaaDaaaleaacaaIXaaabaGaaGOmaaaakiaadogadaqhaaWcbaGaaG ymaaqaaiaaikdaaaGccqGHsislcaWGTbWaaSbaaSqaaiaaikdaaeqa aOGaamODamaaDaaaleaacaaIYaaabaGaaGOmaaaakiaadogadaqhaa WcbaGaaGOmaaqaaiaaikdaaaGccaGGDbaaaaa@BCE5@                 (18)

The average value of c12 and c22 over very many collisions is 1/2 so we can rewrite this as

< E 1 ' E 1 >= M m 1 + m 2 [ m 2 v 2 2 2 m 1 v 1 2 2 ] < E 2 ' E 2 >= M m 1 + m 2 [ m 1 v 1 2 2 m 2 v 2 2 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeyipaW JaamyramaaBaaaleaacaaIXaaabeaakiaacEcacqGHsislcaWGfbWa aSbaaSqaaiaaigdaaeqaaOGaeyOpa4JaaGPaVlabg2da9maalaaaba Gaamytaaqaaiaad2gadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWG TbWaaSbaaSqaaiaaikdaaeqaaaaakiaacUfadaWcaaqaaiaad2gada WgaaWcbaGaaGOmaaqabaGccaWG2bWaa0baaSqaaiaaikdaaeaacaaI YaaaaaGcbaGaaGOmaaaacqGHsisldaWcaaqaaiaad2gadaWgaaWcba GaaGymaaqabaGccaWG2bWaa0baaSqaaiaaigdaaeaacaaIYaaaaaGc baGaaGOmaaaacaGGDbaabaGaeyipaWJaamyramaaBaaaleaacaaIYa aabeaakiaacEcacqGHsislcaWGfbWaaSbaaSqaaiaaikdaaeqaaOGa eyOpa4JaaGPaVlabg2da9maalaaabaGaamytaaqaaiaad2gadaWgaa WcbaGaaGymaaqabaGccqGHRaWkcaWGTbWaaSbaaSqaaiaaikdaaeqa aaaakiaacUfadaWcaaqaaiaad2gadaWgaaWcbaGaaGymaaqabaGcca WG2bWaa0baaSqaaiaaigdaaeaacaaIYaaaaaGcbaGaaGOmaaaacqGH sisldaWcaaqaaiaad2gadaWgaaWcbaGaaGOmaaqabaGccaWG2bWaa0 baaSqaaiaaikdaaeaacaaIYaaaaaGcbaGaaGOmaaaacaGGDbaaaaa@6F1E@                                                           (19)

and then recognizing that the quantities in brackets are the original energies we have

< E 1 ' E 1 >= M m 1 + m 2 [ E 2 E 1 ] < E 2 ' E 2 >= M m 1 + m 2 [ E 1 E 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeyipaW JaamyramaaBaaaleaacaaIXaaabeaakiaacEcacqGHsislcaWGfbWa aSbaaSqaaiaaigdaaeqaaOGaeyOpa4JaaGPaVlabg2da9maalaaaba Gaamytaaqaaiaad2gadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWG TbWaaSbaaSqaaiaaikdaaeqaaaaakiaacUfacaWGfbWaaSbaaSqaai aaikdaaeqaaOGaeyOeI0IaamyramaaBaaaleaacaaIXaaabeaakiaa c2faaeaacqGH8aapcaWGfbWaaSbaaSqaaiaaikdaaeqaaOGaai4jai abgkHiTiaadweadaWgaaWcbaGaaGOmaaqabaGccqGH+aGpcaaMc8Ua eyypa0ZaaSaaaeaacaWGnbaabaGaamyBamaaBaaaleaacaaIXaaabe aakiabgUcaRiaad2gadaWgaaWcbaGaaGOmaaqabaaaaOGaai4waiaa dweadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWGfbWaaSbaaSqaai aaikdaaeqaaOGaaiyxaaaaaa@60A8@                                                                   (20)

From this equation we can say:

1. If E2>E1 the energy of particle 1 increases by a factor proportional to the difference.

2. If E1>E2 the energy of particle 2 increases by a factor proportional to the difference.

We may also subtract the above equations to write the differential equation:

d( E 1 E 2 ) dn =2 M m 1 + m 2 ( E 1 E 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiaacIcacaWGfbWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0Iaamyr amaaBaaaleaacaaIYaaabeaakiaacMcaaeaacaWGKbGaamOBaaaacq GH9aqpcqGHsislcaaIYaWaaSaaaeaacaWGnbaabaGaamyBamaaBaaa leaacaaIXaaabeaakiabgUcaRiaad2gadaWgaaWcbaGaaGOmaaqaba aaaOGaaiikaiaadweadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWG fbWaaSbaaSqaaiaaikdaaeqaaOGaaiykaaaa@4C74@                                      (21)

where dn is the increment in the number of collisions and the equation has the solution:

            ( E 1 E 2 )= ( E 1 E 2 ) 0 exp( 2 M m 1 + m 2 n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcacaWGfb WaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaamyramaaBaaaleaacaaI YaaabeaakiaacMcacqGH9aqpcaGGOaGaamyramaaBaaaleaacaaIXa aabeaakiabgkHiTiaadweadaWgaaWcbaGaaGOmaaqabaGccaGGPaWa aSbaaSqaaiaaicdaaeqaaOGaciyzaiaacIhacaGGWbWaaeWaaeaacq GHsislcaaIYaWaaSaaaeaacaWGnbaabaGaamyBamaaBaaaleaacaaI XaaabeaakiabgUcaRiaad2gadaWgaaWcbaGaaGOmaaqabaaaaOGaam OBaaGaayjkaiaawMcaaaaa@4FE6@                            (22)

where (E1 - E2)0 is the initial value of the energy difference.  The above equation shows that the energy difference between atoms 1 and 2 will degrade to zero as the number of collisions, n, increase.  This result is for only one pair of atoms that interact by atom-atom collisions in a box.  But this  results also extends to the energy distribution of many atoms of possibly different masses colliding inside a box.

 

Removing Particle Overlap

            Since the animation is digital we can expect that most often the collision condition will be realized when the distance between the centers of the two spheres,r12, is less than D=(D1+D2)/2. To handle this I will increase the distance between the centers by the difference

  dr=D r 12 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgacaWGYb Gaeyypa0JaamiraiabgkHiTiaadkhadaWgaaWcbaGaaGymaiaaikda aeqaaaaa@3D21@

by shifting each sphere in opposite directions by dr/2 along u.  Thus we will move the centers of each particle by the vectors:

δ r 1,2 =± dr 2 u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaadk hadaWgaaWcbaGaaGymaiaacYcacaaIYaaabeaakiabg2da9iabggla XoaalaaabaGaamizaiaadkhaaeaacaaIYaaaaiaahwhaaaa@4182@                                                                                                     (23)