Accelerated Space Trip Signal Reception Rates

Introduction

One of the "standard" graphics associated with accelerated space trips is to show a large group of evenly spaced signals sent by the inertial frame (earth) to the accelerated frame (rocket) and vice versa.  That might be a worthwhile endeavor but it would be more interesting to see how the signal reception rates vary as the space trip continues since this will be some measure of apparent variation the clock rates.  The present document will compute these reception rates.

Rocket to Earth Reception Rate

To be definite, our signals will be very short light pulses so we'll use the term pulse from now on.

We'll start with pulses sent from the rocket to earth.  These will be sent at equal increments, dt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgacaWG0b aaaa@37CE@ ,  of rocket proper time so their emission events will resemble the ticks of the rocket clock.  The displacement at which emission occurs is the rocket displacement, x r (t) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaamOCaaqabaGccaGGOaGaamiDaiaacMcaaaa@3A68@ .

To compute x r (t) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaamOCaaqabaGccaGGOaGaamiDaiaacMcaaaa@3A68@  for a general acceleration program which has acceleration phases as well as cruise phases we will need the time integral of the acceleration

θ(t)= 0 t a(t')dt' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjaacI cacaWG0bGaaiykaiabg2da9maapehabaGaamyyaiaacIcacaWG0bGa ai4jaiaacMcacaWGKbGaamiDaiaacEcaaSqaaiaaicdaaeaacaWG0b aaniabgUIiYdaaaa@4585@  

(1.1)

where a(t) is the acceleration as a function of rocket proper time.

Then we can obtain the emission displacement, x r ( t i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaamOCaaqabaGccaGGOaGaamiDamaaBaaaleaacaWGPbaabeaa kiaacMcaaaa@3B8C@ , for the ith pulse, by the following integral

x r ( t i )=c 0 t i tanhθ(t')dt' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaamOCaaqabaGccaGGOaGaamiDamaaBaaaleaacaWGPbaabeaa kiaacMcacqGH9aqpcaWGJbWaa8qCaeaacaGG0bGaaiyyaiaac6gaca GGObGaeqiUdeNaaiikaiaadshacaGGNaGaaiykaiaadsgacaWG0bGa ai4jaaWcbaGaaGimaaqaaiaadshadaWgaaadbaGaamyAaaqabaaani abgUIiYdaaaa@4DAB@  

(1.2)

The pulses proceed toward the earth at the speed of light which means that they travel upward  in the Minkowski space time diagram (ct, x) and toward the earth world line at an angle of 45 degrees.  Therefore at t', subsequent to emission, their coordinates will be:

(c t i ' , x i ' )=[c t i , x r ( t i )]+[c( t ' t i ),c( t ' - t i )] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcacaWGJb GaamiDamaaDaaaleaacaWGPbaabaGaai4jaaaakiaacYcacaWG4bWa a0baaSqaaiaadMgaaeaacaGGNaaaaOGaaiykaiabg2da9iaacUfaca WGJbGaamiDamaaBaaaleaacaWGPbaabeaakiaacYcacaWG4bWaaSba aSqaaiaadkhaaeqaaOGaaiikaiaadshadaWgaaWcbaGaamyAaaqaba GccaGGPaGaaiyxaiabgUcaRiaacUfacaWGJbGaaiikaiaadshadaah aaWcbeqaaiaacEcaaaGccqGHsislcaWG0bWaaSbaaSqaaiaadMgaae qaaOGaaiykaiaacYcacqGHsislcaWGJbGaamikaiaadshadaahaaWc beqaaiaacEcaaaGccaWGTaGaamiDamaaBaaaleaacaWGPbaabeaaki aadMcacaGGDbaaaa@5CDF@  

(1.3)

  

We need to compute the time of reception of the ith pulse at x=0.  Obviously,

c(t' t i )= x r ( t i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacogacaGGOa GaamiDaiaacEcacqGHsislcaWG0bWaaSbaaSqaaiaadMgaaeqaaOGa aiykaiabg2da9iaadIhadaWgaaWcbaGaamOCaaqabaGccaGGOaGaam iDamaaBaaaleaacaWGPbaabeaakiaacMcaaaa@437F@  

(1.4)

so that we have the difference between reception of the ith pulse and the (1+1)th pulse

t ' i+1 t ' i = t i+1 t i + x r ( t i+1 ) x r ( t i ) c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshacaGGNa WaaSbaaSqaaiaadMgacqGHRaWkcaaIXaaabeaakiabgkHiTiaadsha caGGNaWaaSbaaSqaaiaadMgaaeqaaOGaeyypa0JaamiDamaaBaaale aacaWGPbGaey4kaSIaaGymaaqabaGccqGHsislcaWG0bWaaSbaaSqa aiaadMgaaeqaaOGaey4kaSYaaSaaaeaacaWG4bWaaSbaaSqaaiaadk haaeqaaOGaaiikaiaadshadaWgaaWcbaGaamyAaiabgUcaRiaaigda aeqaaOGaaiykaiabgkHiTiaacIhadaWgaaWcbaGaamOCaaqabaGcca GGOaGaamiDamaaBaaaleaacaWGPbaabeaakiaacMcaaeaacaWGJbaa aaaa@5572@  

(1.5)

We are now ready to compute the retarded rate of reception for a particular pulse.  Note that:

d d( t i ) x r (t i )=ctanhθ( t i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaaqaaiaadsgacaGGOaGaamiDamaaBaaaleaacaWGPbaabeaakiaa cMcaaaGaamiEamaaBaaaleaacaWGYbaabeaakiaacIcacaWG0bGaaC jaVpaaBaaaleaacaWGPbaabeaakiaacMcacqGH9aqpcaWGJbGaciiD aiaacggacaGGUbGaaiiAaiabeI7aXjaacIcacaWG0bWaaSbaaSqaai aadMgaaeqaaOGaaiykaaaa@4D42@  

(1.6)

and this will cause a difference between reception rate and emission rate.  When tanh is positive this causes a decreasing rate of reception while when tanh is negative it causes an increasing rate of reception.  It is the same as a Doppler shift in frequency but its effect is retarded by the value of x(t)/c.

Then the rate of reception, dn/dt, at time t' is:

dn dt' = dn dt 1tanh[θ(t'x( t i )/c] 1+tanh[θ(t'x( t i )/c] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiaad6gaaeaacaWGKbGaamiDaiaacEcaaaGaeyypa0ZaaSaaaeaa caWGKbGaamOBaaqaaiaadsgacaWG0baaamaakaaabaWaaSaaaeaaca aIXaGaeyOeI0IaciiDaiaacggacaGGUbGaaiiAaiaacUfacqaH4oqC caGGOaGaamiDaiaacEcacqGHsislcaWG4bGaaiikaiaadshadaWgaa WcbaGaamyAaaqabaGccaGGPaGaai4laiaadogacaGGDbaabaGaaGym aiabgUcaRiGacshacaGGHbGaaiOBaiaacIgacaGGBbGaeqiUdeNaai ikaiaadshacaGGNaGaeyOeI0IaamiEaiaacIcacaWG0bWaaSbaaSqa aiaadMgaaeqaaOGaaiykaiaac+cacaWGJbGaaiyxaaaaaSqabaaaaa@63A4@  

(1.7)

where dn/dt  is the rocket's proper time rate of pulse emission.

Figure 1: Plot of relative earth reception rate, dn/dt'/(dn/dt),equation  (1.7), as a function of t for acceleration=1 light year/year2 .

This completes the calculation of the rate of reception from the rocket to the earth.

Earth to Rocket Reception Rate

 

The rocket is moving with respect to the world line of the earth at speed v r (t)=ctanhθ(t) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAhadaWgaa WcbaGaamOCaaqabaGccaGGOaGaaiiDaiaacMcacqGH9aqpcaWGJbGa ciiDaiaacggacaGGUbGaaiiAaiabeI7aXjaacIcacaWG0bGaaiykaa aa@4418@  and its distance at time t is

 

x r (t)=c 0 t tanhθ(t')dt' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaamOCaaqabaGccaGGOaGaamiDaiaacMcacqGH9aqpcaWGJbWa a8qCaeaacaGG0bGaaiyyaiaac6gacaGGObGaeqiUdeNaaiikaiaads hacaGGNaGaaiykaiaadsgacaWG0bGaai4jaaWcbaGaaGimaaqaaiaa dshaa0Gaey4kIipaaaa@4B6C@  

(1.8)

The reception rate is Doppler shifted by the following factor

dn dt' = dn dt 1tanh[θ(t'x( t i )/c] 1+tanh[θ(t'x( t i )/c] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiaad6gaaeaacaWGKbGaamiDaiaacEcaaaGaeyypa0ZaaSaaaeaa caWGKbGaamOBaaqaaiaadsgacaWG0baaamaakaaabaWaaSaaaeaaca aIXaGaeyOeI0IaciiDaiaacggacaGGUbGaaiiAaiaacUfacqaH4oqC caGGOaGaamiDaiaacEcacqGHsislcaWG4bGaaiikaiaadshadaWgaa WcbaGaamyAaaqabaGccaGGPaGaai4laiaadogacaGGDbaabaGaaGym aiabgUcaRiGacshacaGGHbGaaiOBaiaacIgacaGGBbGaeqiUdeNaai ikaiaadshacaGGNaGaeyOeI0IaamiEaiaacIcacaWG0bWaaSbaaSqa aiaadMgaaeqaaOGaaiykaiaac+cacaWGJbGaaiyxaaaaaSqabaaaaa@63A4@  

(1.9)

Figure 2: Plot of relative rocket reception rate, dn/dt'/(dn/dt),equation  (1.7), as a function of rocket proper time, t, for acceleration=1 light year/year2 .