Derivation of gamma by experiment

This animation shows how the factor gamma, γ, would be determined by experiment.  From the point of view of the observer in system A, system B is moving along the x axis at speed v.  From the point of view of the observer in system B, system A is moving along the x axis at speed -v. Therefore it is natural to write:

x A =γ( x B +v t B ) x B =γ( x A v t A ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamiEam aaBaaaleaacaWGbbaabeaakiabg2da9iabeo7aNjaacIcacaWG4bWa aSbaaSqaaiaadkeaaeqaaOGaey4kaSIaamODaiaadshadaWgaaWcba GaamOqaaqabaGccaGGPaaabaGaamiEamaaBaaaleaacaWGcbaabeaa kiabg2da9iabeo7aNjaacIcacaWG4bWaaSbaaSqaaiaadgeaaeqaaO GaeyOeI0IaamODaiaadshadaWgaaWcbaGaamyqaaqabaGccaGGPaaa aaa@4D94@  

(1.1)

                       
 where tB and tA are times measured in the A and B moving systems and
γ is a factor independent of the xs and ts that is to be determined.  Equations 1 are the same as Galilean transformations except for the factor γ.  And the fact that tA and tB may not be equal.
Thus xA=0 when xB=-vtB and xB=0 when xA=vtA.  In order to derive
γ from these equations the following experiment is performed.  A light pulse is allowed to propagate distance xA=c*tA in system A and a similar light pulse is allowed to propagate a distance xB=c*tB in system B.  Of course, the speed of propagation has to be c for both observer A and observer B whether the pulse observed is in the same system as the observer or not. Then the equations above become:

c t A =γ t B (c+v) c t B =γ t A (c+v) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaam4yai aadshadaWgaaWcbaGaamyqaaqabaGccqGH9aqpcqaHZoWzcaWG0bWa aSbaaSqaaiaadkeaaeqaaOGaaiikaiaadogacqGHRaWkcaWG2bGaai ykaaqaaiaadogacaWG0bWaaSbaaSqaaiaadkeaaeqaaOGaeyypa0Ja eq4SdCMaamiDamaaBaaaleaacaWGbbaabeaakiaacIcacaWGJbGaey 4kaSIaamODaiaacMcaaaaa@4D2E@  

(1.2)


 If we multiply the left sides and the right sides of these equations we obtain a single equation:

c 2 t A t B = γ 2 t A t B ( c 2 v 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadogadaahaa WcbeqaaiaaikdaaaGccaWG0bWaaSbaaSqaaiaadgeaaeqaaOGaamiD amaaBaaaleaacaWGcbaabeaakiabg2da9iabeo7aNnaaCaaaleqaba GaaGOmaaaakiaadshadaWgaaWcbaGaamyqaaqabaGccaWG0bWaaSba aSqaaiaadkeaaeqaaOGaaiikaiaadogadaahaaWcbeqaaiaaikdaaa GccqGHsislcaWG2bWaaWbaaSqabeaacaaIYaaaaOGaaiykaaaa@494B@  

(1.3)


Dividing each side of this equation by tAtB we obtain:

c 2 = γ 2 ( c 2 v 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadogadaahaa WcbeqaaiaaikdaaaGccqGH9aqpcqaHZoWzdaahaaWcbeqaaiaaikda aaGccaGGOaGaam4yamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadA hadaahaaWcbeqaaiaaikdaaaGccaGGPaaaaa@4175@  

(1.4)


From which:

γ= 1 1 v 2 c 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo7aNjabg2 da9maalaaabaGaaGymaaqaamaakaaabaGaaGymaiabgkHiTmaalaaa baGaamODamaaCaaaleqabaGaaGOmaaaaaOqaaiaadogadaahaaWcbe qaaiaaikdaaaaaaaqabaaaaaaa@3EEA@  

(1.5)

Most importantly, notice that, if v is non-zero, γ cannot be 1 and therefore the simple Galilean transformation which sets  γ equal to 1 cannot be valid.