Paraphrase of Basics of Space Flight     

Introduction

            The link Basics of Space Flight gives a thorough set of equations in terms of the burnout speed, v1, the range, r1, from the center of a large mass, GM, and the flight angle γ1 of the vector velocity with respect to the vector range.  From these we need to find the value of the initial true anomaly angle ν1, the ellipse semi-major axis a, the ellipse eccentricity e, and the ellipse semi-minor axis b. 

           

Figures

Equations

            There are two conservation laws that pertain to this problem: Energy and Angular Momentum.

The energy law is

                                                                       

m v 2 2 GMm r = m v 1 2 2 GMm r 1 MathType@MTEF@5@5@+= feaaheart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam yBaiaadAhadaahaaWcbeqaaiaaikdaaaaakeaacaaIYaaaaiabgkHi TmaalaaabaGaam4raiaad2eacaWGTbaabaGaamOCaaaacqGH9aqpda Wcaaqaaiaad2gacaWG2bWaa0baaSqaaiaaigdaaeaacaaIYaaaaaGc baGaaGOmaaaacqGHsisldaWcaaqaaiaadEeacaWGnbGaamyBaaqaai aadkhadaqhaaWcbaGaaGymaaqaaaaaaaaaaa@48EE@  

(1.1)

And the angular momentum law is:

rvsinγ= r 1 v 1 sin γ 1 MathType@MTEF@5@5@+= feaaheart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhacaWG2b Gaci4CaiaacMgacaGGUbGaeq4SdCMaeyypa0JaamOCamaaBaaaleaa caaIXaaabeaakiaadAhadaWgaaWcbaGaaGymaaqabaGcciGGZbGaai yAaiaac6gacqaHZoWzdaWgaaWcbaGaaGymaaqabaaaaa@4696@  

(1.2)

At both the periapsis, Rp, and the apapsis, Ra, γ=π/2 MathType@MTEF@5@5@+= feaaheart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo7aNjabg2 da9iabec8aWjaac+cacaaIYaaaaa@3BBF@ , so equation (1.2) becomes:

R p v p = R a v a MathType@MTEF@5@5@+= feaaheart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfadaWgaa WcbaGaamiCaaqabaGccaWG2bWaaSbaaSqaaiaadchaaeqaaOGaeyyp a0JaamOuamaaBaaaleaacaWGHbaabeaakiaadAhadaWgaaWcbaGaam yyaaqabaaaaa@3F13@  

(1.3)

Combining equations (1.3) and (1.1) we obtain the following equations for the speeds at periapsis and apapsis

v p = 2GM R a R P ( R a + R p ) v a = 2GM R p R a ( R a + R p ) MathType@MTEF@5@5@+= feaaheart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamODam aaBaaaleaacaWGWbaabeaakiabg2da9maakaaabaWaaSaaaeaacaaI YaGaam4raiaad2eacaWGsbWaaSbaaSqaaiaadggaaeqaaaGcbaGaam OuamaaBaaaleaacaWGqbaabeaakiaacIcacaWGsbWaaSbaaSqaaiaa dggaaeqaaOGaey4kaSIaamOuamaaBaaaleaacaWGWbaabeaakiaacM caaaaaleqaaaGcbaGaamODamaaBaaaleaacaWGHbaabeaakiabg2da 9maakaaabaWaaSaaaeaacaaIYaGaam4raiaad2eacaWGsbWaaSbaaS qaaiaadchaaeqaaaGcbaGaamOuamaaBaaaleaacaWGHbaabeaakiaa cIcacaWGsbWaaSbaaSqaaiaadggaaeqaaOGaey4kaSIaamOuamaaBa aaleaacaWGWbaabeaakiaacMcaaaaaleqaaaaaaa@5573@  

(1.4)

We can also use these expressions to get Rp and Ra

R a = R p 2GM R p v p 2 1 R p = R a 2GM R a v a 2 1 MathType@MTEF@5@5@+= feaaheart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamOuam aaBaaaleaacaWGHbaabeaakiabg2da9maalaaabaGaamOuamaaBaaa leaacaWGWbaabeaaaOqaamaalaaabaGaaGOmaiaadEeacaWGnbaaba GaamOuamaaBaaaleaacaWGWbaabeaakiaadAhadaqhaaWcbaGaamiC aaqaaiaaikdaaaaaaOGaeyOeI0IaaGymaaaaaeaacaWGsbWaaSbaaS qaaiaadchaaeqaaOGaeyypa0ZaaSaaaeaacaWGsbWaaSbaaSqaaiaa dggaaeqaaaGcbaWaaSaaaeaacaaIYaGaam4raiaad2eaaeaacaWGsb WaaSbaaSqaaiaadggaaeqaaOGaamODamaaDaaaleaacaWGHbaabaGa aGOmaaaaaaGccqGHsislcaaIXaaaaaaaaa@51D2@  

(1.5)

Again using equation (1.2) for vp and Rp we can write

v p = r 1 v 1 sin γ 1 R p MathType@MTEF@5@5@+= feaaheart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAhadaWgaa WcbaGaamiCaaqabaGccqGH9aqpdaWcaaqaaiaadkhadaWgaaWcbaGa aGymaaqabaGccaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaci4CaiaacM gacaGGUbGaeq4SdC2aaSbaaSqaaiaaigdaaeqaaaGcbaGaamOuamaa BaaaleaacaWGWbaabeaaaaaaaa@445D@  

(1.6)

And again using equation (1.1) we can write:

r 1 2 v 1 2 sin 2 γ 1 R p,a 2 v 1 2 =2GM( 1 R p,a 1 r 1 ) MathType@MTEF@5@5@+= feaaheart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam OCamaaDaaaleaacaaIXaaabaGaaGOmaaaakiaadAhadaqhaaWcbaGa aGymaaqaaiaaikdaaaGcciGGZbGaaiyAaiaac6gadaahaaWcbeqaai aaikdaaaGccqaHZoWzdaWgaaWcbaGaaGymaaqabaaakeaacaWGsbWa a0baaSqaaiaadchacaGGSaGaamyyaaqaaiaaikdaaaaaaOGaeyOeI0 IaamODamaaDaaaleaacaaIXaaabaGaaGOmaaaakiabg2da9iaaikda caWGhbGaamytamaabmaabaWaaSaaaeaacaaIXaaabaGaamOuamaaBa aaleaacaWGWbGaaiilaiaadggaaeqaaaaakiabgkHiTmaalaaabaGa aGymaaqaaiaadkhadaWgaaWcbaGaaGymaaqabaaaaaGccaGLOaGaay zkaaaaaa@567D@  

(1.7)

Which can be solved for Rp by multiplying first by R p 2 / ( r 1 v 1 ) 2 MathType@MTEF@5@5@+= feaaheart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiaadk fadaqhaaWcbaGaamiCaaqaaiaaikdaaaGccaGGVaGaaiikaiaadkha daWgaaWcbaGaaGymaaqabaGccaWG2bWaaSbaaSqaaiaaigdaaeqaaO GaaiykamaaCaaaleqabaGaaGOmaaaaaaa@405B@  which results is the equation

( R p,a r 1 ) 2 (1C)+( R p,a r 1 )C sin 2 γ 1 =0 whereC= 2GM r 1 v 1 2 MathType@MTEF@5@5@+= feaaheart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaWaaeWaae aadaWcaaqaaiaadkfadaWgaaWcbaGaamiCaiaacYcacaWGHbaabeaa aOqaaiaadkhadaWgaaWcbaGaaGymaaqabaaaaaGccaGLOaGaayzkaa WaaWbaaSqabeaacaaIYaaaaOGaaiikaiaaigdacqGHsislcaWGdbGa aiykaiabgUcaRmaabmaabaWaaSaaaeaacaWGsbWaaSbaaSqaaiaadc hacaGGSaGaamyyaaqabaaakeaacaWGYbWaaSbaaSqaaiaaigdaaeqa aaaaaOGaayjkaiaawMcaaiaadoeacqGHsislciGGZbGaaiyAaiaac6 gadaahaaWcbeqaaiaaikdaaaGccqaHZoWzdaWgaaWcbaGaaGymaaqa baGccqGH9aqpcaaIWaaabaGaam4DaiaadIgacaWGLbGaamOCaiaadw gacaaMc8UaaGPaVlaaykW7caWGdbGaeyypa0ZaaSaaaeaacaaIYaGa am4raiaad2eaaeaacaWGYbWaaSbaaSqaaiaaigdaaeqaaOGaamODam aaDaaaleaacaaIXaaabaGaaGOmaaaaaaaaaaa@65A8@  

(1.8)

Which results in

R p,a r 1 = C± C 2 +4(1C) sin 2 γ 1 2(1C) MathType@MTEF@5@5@+= feaaheart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam OuamaaBaaaleaacaWGWbGaaiilaiaadggaaeqaaaGcbaGaamOCamaa BaaaleaacaaIXaaabeaaaaGccqGH9aqpdaWcaaqaaiabgkHiTiaado eacqGHXcqSdaGcaaqaaiaadoeadaahaaWcbeqaaiaaikdaaaGccqGH RaWkcaaI0aGaaiikaiaaigdacqGHsislcaWGdbGaaiykaiGacohaca GGPbGaaiOBamaaCaaaleqabaGaaGOmaaaakiabeo7aNnaaBaaaleaa caaIXaaabeaaaeqaaaGcbaGaaGOmaiaacIcacaaIXaGaeyOeI0Iaam 4qaiaacMcaaaaaaa@524A@  

(1.9)

By definition of an ellipse with semi-major axis a and eccentricity e we have

R a =a(1+e) R p =a(1e) MathType@MTEF@5@5@+= feaaheart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamOuam aaBaaaleaacaWGHbaabeaakiabg2da9iaadggacaGGOaGaaGymaiab gUcaRiaadwgacaGGPaaabaGaamOuamaaBaaaleaacaWGWbaabeaaki abg2da9iaadggacaGGOaGaaGymaiabgkHiTiaadwgacaGGPaaaaaa@4584@  

(1.10)

These equations can be solved for e by eliminating a

e= R a R p 1 R a R p +1 MathType@MTEF@5@5@+= feaaheart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwgacqGH9a qpdaWcaaqaamaalaaabaGaamOuamaaBaaaleaacaWGHbaabeaaaOqa aiaadkfadaWgaaWcbaGaamiCaaqabaaaaOGaeyOeI0IaaGymaaqaam aalaaabaGaamOuamaaBaaaleaacaWGHbaabeaaaOqaaiaadkfadaWg aaWcbaGaamiCaaqabaaaaOGaey4kaSIaaGymaaaaaaa@4334@  

(1.11)

And we already have expressions for Rp and  Ra in equation (1.9).

Also from equations (1.10) we have a result for the semi-major axis

a= R p + R a 2 = C 2(1C) r 1 MathType@MTEF@5@5@+= feaaheart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggacqGH9a qpdaWcaaqaaiaadkfadaWgaaWcbaGaamiCaaqabaGccqGHRaWkcaWG sbWaaSbaaSqaaiaadggaaeqaaaGcbaGaaGOmaaaacqGH9aqpdaWcaa qaaiabgkHiTiaadoeaaeaacaaIYaGaaiikaiaaigdacqGHsislcaWG dbGaaiykaaaacaWGYbWaaSbaaSqaaiaaigdaaeqaaaaa@46A3@  

(1.12)

Which means that a is independent of initial flight angle γ1.

A much more convenient expression for e is

e= ( r 1 v 1 2 GM 1 ) 2 sin 2 γ 1 + cos 2 γ 1 MathType@MTEF@5@5@+= feaaheart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwgacqGH9a qpdaGcaaqaamaabmaabaWaaSaaaeaacaWGYbWaaSbaaSqaaiaaigda aeqaaOGaamODamaaDaaaleaacaaIXaaabaGaaGOmaaaaaOqaaiaadE eacaWGnbaaaiabgkHiTiaaigdaaiaawIcacaGLPaaadaahaaWcbeqa aiaaikdaaaGcciGGZbGaaiyAaiaac6gadaahaaWcbeqaaiaaikdaaa GccqaHZoWzdaWgaaWcbaGaaGymaaqabaGccqGHRaWkciGGJbGaai4B aiaacohadaahaaWcbeqaaiaaikdaaaGccqaHZoWzdaWgaaWcbaGaaG ymaaqabaaabeaaaaa@4FE1@  

(1.13)

We also need the “true anomaly” angle ν 1 MathType@MTEF@5@5@+= feaaheart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabe27aUnaaBa aaleaacaaIXaaabeaaaaa@3885@   from the periapsis point to the initial position vector end, r1, (see Figure) and this is obtained from the equation

tan ν 1 = r 1 v 1 2 GM sin γ 1 cos γ 1 r 1 v 1 2 GM sin 2 γ 1 1 MathType@MTEF@5@5@+= feaaheart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGacshacaGGHb GaaiOBaiabe27aUnaaBaaaleaacaaIXaaabeaakiabg2da9maalaaa baWaaSaaaeaacaWGYbWaaSbaaSqaaiaaigdaaeqaaOGaamODamaaDa aaleaacaaIXaaabaGaaGOmaaaaaOqaaiaadEeacaWGnbaaaiGacoha caGGPbGaaiOBaiabeo7aNnaaBaaaleaacaaIXaaabeaakiGacogaca GGVbGaai4Caiabeo7aNnaaBaaaleaacaaIXaaabeaaaOqaamaalaaa baGaamOCamaaBaaaleaacaaIXaaabeaakiaadAhadaqhaaWcbaGaaG ymaaqaaiaaikdaaaaakeaacaWGhbGaamytaaaaciGGZbGaaiyAaiaa c6gadaahaaWcbeqaaiaaikdaaaGccqaHZoWzdaWgaaWcbaGaaGymaa qabaGccqGHsislcaaIXaaaaaaa@5BD9@  

(1.14)

Another easier expression for a is

a= 1 2 r 1 v 1 2 GM MathType@MTEF@5@5@+= feaaheart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggacqGH9a qpdaWcaaqaaiaaigdaaeaadaWcaaqaaiaaikdaaeaacaWGYbWaaSba aSqaaiaaigdaaeqaaaaakiabgkHiTmaalaaabaGaamODamaaDaaale aacaaIXaaabaGaaGOmaaaaaOqaaiaadEeacaWGnbaaaaaaaaa@4094@  

(1.15)

Also, since we have equation (1.13) for e, and equation (1.15) for a, we can obtain Rp and Ra from equations(1.10) without the need for the quadratic equation solution (1.9).

Parameters e and a specify the shape of the ellipse while Rp defines the distance of closest approach to the large mass, GM, and ν 1 MathType@MTEF@5@5@+= feaaheart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabe27aUnaaBa aaleaacaaIXaaabeaaaaa@3885@  expresses the starting angle. 

Note, for any ellipse, that the semi-minor axis, b, is

b=a 1 e 2 MathType@MTEF@5@5@+= feaaheart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkgacqGH9a qpcaWGHbWaaOaaaeaacaaIXaGaeyOeI0IaamyzamaaCaaaleqabaGa aGOmaaaaaeqaaaaa@3C43@  

(1.16)

We need one more expression: the rate of increase of the true anomaly angle ν MathType@MTEF@5@5@+= feaaheart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabe27aUbaa@379E@  .

Three equations are involved here.  First one is called the eccentric anomaly,E, and is

E= cos 1 ( e+cosν 1+ecosν ) MathType@MTEF@5@5@+= feaaheart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweacqGH9a qpciGGJbGaai4BaiaacohadaahaaWcbeqaaiabgkHiTiaaigdaaaGc daqadaqaamaalaaabaGaamyzaiabgUcaRiGacogacaGGVbGaai4Cai abe27aUbqaaiaaigdacqGHRaWkcaWGLbGaci4yaiaac+gacaGGZbGa eqyVd4gaaaGaayjkaiaawMcaaaaa@4B69@  

(1.17)

The second one is for the mean anomaly angle, M

M=EesinE MathType@MTEF@5@5@+= feaaheart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eacqGH9a qpcaWGfbGaeyOeI0IaamyzaiGacohacaGGPbGaaiOBaiaadweaaaa@3E00@  

(1.18)

The third equation relates the change of M to the change of time:

M M 0 = GM a 3 (t t 0 ) MathType@MTEF@5@5@+= feaaheart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eacqGHsi slcaWGnbWaaSbaaSqaaiaaicdaaeqaaOGaeyypa0ZaaOaaaeaadaWc aaqaaiaadEeacaWGnbaabaGaamyyamaaCaaaleqabaGaaG4maaaaaa aabeaakiaacIcacaWG0bGaeyOeI0IaamiDamaaBaaaleaacaaIWaaa beaakiaacMcaaaa@432C@  

(1.19)

So we solve equation (1.17) for E in terms of ν MathType@MTEF@5@5@+= feaaheart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabe27aUbaa@379E@  , then M is related to E and the progression of M with respect to time is

dM dt = GM a 3 MathType@MTEF@5@5@+= feaaheart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiaad2eaaeaacaWGKbGaamiDaaaacqGH9aqpdaGcaaqaamaalaaa baGaam4raiaad2eaaeaacaWGHbWaaWbaaSqabeaacaaIZaaaaaaaae qaaaaa@3E26@  

(1.20)

And using the chain rule we can write

dM dt = dE dt (1ecosE)= GM a 3 MathType@MTEF@5@5@+= feaaheart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiaad2eaaeaacaWGKbGaamiDaaaacqGH9aqpdaWcaaqaaiaadsga caWGfbaabaGaamizaiaadshaaaGaaiikaiaaigdacqGHsislcaWGLb Gaci4yaiaac+gacaGGZbGaamyraiaacMcacqGH9aqpdaGcaaqaamaa laaabaGaam4raiaad2eaaeaacaWGHbWaaWbaaSqabeaacaaIZaaaaa aaaeqaaaaa@4A59@  

(1.21)

And then use the chain rule on equation (1.17) to obtain and expression for ν ˙ MathType@MTEF@5@5@+= feaaheart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbe27aUzaaca aaaa@37A7@  in terms of ν MathType@MTEF@5@5@+= feaaheart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabe27aUbaa@379E@  .

Referring to mean and eccentric anomaly as we did above is more complicated than necessary.  Instead we refer to Kepler Laws of Planetary Motion from which we obtain the following equations for the period of the elliptical motion, T, distance from the large mass, r, and the rate of angular motion ν ˙ MathType@MTEF@5@5@+= feaaheart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbe27aUzaaca aaaa@37A7@  

T= 2π a 3 2 GM MathType@MTEF@5@5@+= feaaheart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfacqGH9a qpdaWcaaqaaiaaikdacqaHapaCcaWGHbWaaWbaaSqabeaadaWcaaqa aiaaiodaaeaacaaIYaaaaaaaaOqaamaakaaabaGaam4raiaad2eaaS qabaaaaaaa@3EAC@  

(1.22)

ν ˙ = 2πab T r 2 MathType@MTEF@5@5@+= feaaheart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbe27aUzaaca Gaeyypa0ZaaSaaaeaacaaIYaGaeqiWdaNaamyyaiaadkgaaeaacaWG ubGaamOCamaaCaaaleqabaGaaGOmaaaaaaaaaa@3FBB@  

(1.23)

r=a 1 e 2 1+ecosν MathType@MTEF@5@5@+= feaaheart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhacqGH9a qpcaWGHbWaaSaaaeaacaaIXaGaeyOeI0IaamyzamaaCaaaleqabaGa aGOmaaaaaOqaaiaaigdacqGHRaWkcaWGLbGaci4yaiaac+gacaGGZb GaeqyVd4gaaaaa@436F@  

(1.24)

Combining equations (1.16)(1.22), and (1.24) in equation (1.23) we get the following expression for the rate of change ν ˙ MathType@MTEF@5@5@+= feaaheart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbe27aUzaaca aaaa@37A7@  

ν ˙ = GM [a(1 e 2 )] 3 2 ( 1+ecosν ) 2 MathType@MTEF@5@5@+= feaaheart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbe27aUzaaca Gaeyypa0ZaaSaaaeaadaGcaaqaaiaadEeacaWGnbaaleqaaaGcbaGa ai4waiaadggacaGGOaGaaGymaiabgkHiTiaadwgadaahaaWcbeqaai aaikdaaaGccaGGPaGaaiyxamaaCaaaleqabaWaaSaaaeaacaaIZaaa baGaaGOmaaaaaaaaaOWaaeWaaeaacaaIXaGaey4kaSIaamyzaiGaco gacaGGVbGaai4Caiabe27aUbGaayjkaiaawMcaamaaCaaaleqabaGa aGOmaaaaaaa@4D47@  

(1.25)

To obtain the angle ν MathType@MTEF@5@5@+= feaaheart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabe27aUbaa@379E@   and radius r after a time t, we integrate equation (1.25) with respect to time.  This (x,y) location of the smaller mass, with respect to the center of the larger mass, is then

 

x=rcosν y=rsinν MathType@MTEF@5@5@+= feaaheart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamiEai abg2da9iaadkhaciGGJbGaai4BaiaacohacqaH9oGBaeaacaWG5bGa eyypa0JaamOCaiGacohacaGGPbGaaiOBaiabe27aUbaaaa@44FC@  

(1.26)