Tidal Forces due to External Bodies

Introduction

            This will be a very simple treatment of the forces due to gravity on particles, m, on the surface of a sphere of radius r from a large mass, M, that is very far away (distance R) from the first mass.  Since the distance is so great we will not be concerned with the size of mass M but we will need to be concerned with the radius, r, of the small particle of mass m since that surface is where  the particle lies.

Calculations

From the diagram below it is apparent that the distance from M to the particle at the end of the r vector is (Rrcosϕ) 2 + r 2 sin 2 ϕ MathType@MTEF@5@5@+= feaaheart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaakaaabaGaai ikaiaadkfacqGHsislcaWGYbGaci4yaiaac+gacaGGZbGaeqy1dyMa aiykamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadkhadaahaaWcbe qaaiaaikdaaaGcciGGZbGaaiyAaiaac6gadaahaaWcbeqaaiaaikda aaGccqaHvpGzaSqabaaaaa@4802@    .  Therefore the magnitude of the force on m due to M is

 

|F|= GMm R 2 + r 2 2rRcosϕ MathType@MTEF@5@5@+= feaaheart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacYhacaWGgb GaaiiFaiabg2da9maalaaabaGaam4raiaad2eacaWGTbaabaGaamOu amaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadkhadaahaaWcbeqaai aaikdaaaGccqGHsislcaaIYaGaamOCaiaadkfaciGGJbGaai4Baiaa cohacqaHvpGzaaaaaa@48FE@          (1.1)

and the vector expression of this force is:

 

F=|F|(cosψxsinψy) MathType@MTEF@5@5@+= feaaheart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahAeacqGH9a qpcaGG8bGaamOraiaacYhacaGGOaGaci4yaiaac+gacaGGZbGaeqiY dKNaaCiEaiabgkHiTiGacohacaGGPbGaaiOBaiabeI8a5jaahMhaca GGPaaaaa@4815@       (1.2)

 

where obviously:

ψ= tan 1 rsinϕ (Rrcosϕ) MathType@MTEF@5@5@+= feaaheart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI8a5jabg2 da9iGacshacaGGHbGaaiOBamaaCaaaleqabaGaeyOeI0IaaGymaaaa kmaalaaabaGaamOCaiGacohacaGGPbGaaiOBaiabew9aMbqaaiaacI cacaGGsbGaeyOeI0IaaiOCaiaacogacaGGVbGaai4Caiabew9aMjaa cMcaaaaaaa@4BBC@  

One must realize that the usually larger mass, MP, is also in orbit and in free fall about the common center of mass of M and MP as shown in Figure 2.

Orbits

Figure 2:Orbits of planet and moon.

In order to get the net force on the particle, we must subtract the gravity force of the same mass  particle located at the center of the sphere of mass MP :

F centered = GMm R 2 x MathType@MTEF@5@5@+= feaaheart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahAeadaWgaa WcbaGaam4yaiaadwgacaWGUbGaamiDaiaadwgacaWGYbGaamyzaiaa dsgaaeqaaOGaeyypa0ZaaSaaaeaacaGGhbGaaiytaiaac2gaaeaaca WGsbWaaWbaaSqabeaacaaIYaaaaaaakiaahIhaaaa@44CA@

(1.3)

Therefore the general expression for the net force is:

F net = GMm R 2 + r 2 2rRcosϕ (cosψxsinψy) GMm R 2 x MathType@MTEF@5@5@+= feaaheart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahAeadaWgaa WcbaGaamOBaiaadwgacaWG0baabeaakiabg2da9maalaaabaGaai4r aiaac2eacaGGTbaabaGaamOuamaaCaaaleqabaGaaGOmaaaakiabgU caRiaadkhadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaIYaGaamOC aiaadkfaciGGJbGaai4BaiaacohacqaHvpGzaaGaaiikaiGacogaca GGVbGaai4CaiabeI8a5jaahIhacqGHsislciGGZbGaaiyAaiaac6ga cqaHipqEcaWH5bGaaiykaiabgkHiTmaalaaabaGaai4raiaac2eaca GGTbaabaGaamOuamaaCaaaleqabaGaaGOmaaaaaaGccaWH4baaaa@5DF0@

(1.4)

Discussion and Critique

Equation (1.4) as well as the Figure are obviously limited to the plane in which the particle and the centers of both mass M and the sphere of radius r lie.  However this makes a pretty good start in showing the forces on particles over a large section of the sphere of radius r.  Force on circles on the sphere which are above and below the plane of the drawing will generally be smaller as shown by the color plot in Figure 2 where red is the largest force magnitude and blue is the lowest.