Lens Ray Calculation

 


Text Box:

Figure 1:  Ray trace showing the incident ray, the refracted rays at both surfaces, as well as the normals to the surfaces where the rays are refracted.  The angles that are needed for the refraction calculations are labeled as described below.

In the labels, the first letter t means that it is referring to an angle as in the greek letter theta.

 

The second letter, L or R, refers to the Left or Right surface. 

 

The third letter can be either r or n.  r refers to a refracted angle with respect to the surface normal and n refers to the angle of the surface normal with respect to the x axis.  This labeling is needed in order to easily see what are the incident angles and the refracted angles and the final ray angle with respect to the x axis.

Calculations

A double convex lens that is centered on the x axis is defined by the left and right radii of curvature, rL and rR.  For convenience we will define the signs of these curvatures so that the xL(y)<0 and xR(y) >0.  If the radius of the lens is rLens then the centers of these curves are at:

x Lc = r L 2 r Lens 2 x Rc = r R 2 r Lens 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamiEam aaBaaaleaacaWGmbGaam4yaaqabaGccqGH9aqpdaGcaaqaaiaadkha daqhaaWcbaGaamitaaqaaiaaikdaaaGccqGHsislcaWGYbWaa0baaS qaaiaadYeacaWGLbGaamOBaiaadohaaeaacaaIYaaaaaqabaaakeaa caWG4bWaaSbaaSqaaiaadkfacaWGJbaabeaakiabg2da9iabgkHiTm aakaaabaGaamOCamaaDaaaleaacaWGsbaabaGaaGOmaaaakiabgkHi TiaadkhadaqhaaWcbaGaamitaiaadwgacaWGUbGaam4Caaqaaiaaik daaaaabeaaaaaa@5156@  

(1.1)

The x location of any point y<rLens on the lens is:

x L (y)= x Lc r L 2 y 2 x R (y)= x Rc + r R 2 y 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamiEam aaBaaaleaacaWGmbaabeaakiaacIcacaWG5bGaaiykaiabg2da9iaa dIhadaWgaaWcbaGaamitaiaadogaaeqaaOGaeyOeI0YaaOaaaeaaca WGYbWaa0baaSqaaiaadYeaaeaacaaIYaaaaOGaeyOeI0IaamyEamaa CaaaleqabaGaaGOmaaaaaeqaaaGcbaGaamiEamaaBaaaleaacaWGsb aabeaakiaacIcacaWG5bGaaiykaiabg2da9iaadIhadaWgaaWcbaGa amOuaiaadogaaeqaaOGaey4kaSYaaOaaaeaacaWGYbWaa0baaSqaai aadkfaaeaacaaIYaaaaOGaeyOeI0IaamyEamaaCaaaleqabaGaaGOm aaaaaeqaaaaaaa@53B5@  

(1.2)

Note that when y=rLens, x=0 as expected for these definitions.  Also note that when y<>0, xL is less than zero while xis greater than zero.

If an incident ray that is parallel to the x axis hits the left surface is at y Li MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMhadaWgaa WcbaGaamitaiaadMgaaeqaaaaa@38D5@  then its corresponding x coordinate is at

x Li = x Lc r L 2 y Li 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaamitaiaadMgaaeqaaOGaeyypa0JaamiEamaaBaaaleaacaWG mbGaam4yaaqabaGccqGHsisldaGcaaqaaiaadkhadaqhaaWcbaGaam itaaqaaiaaikdaaaGccqGHsislcaWG5bWaa0baaSqaaiaadYeacaWG PbaabaGaaGOmaaaaaeqaaaaa@451A@  

(1.3)

Also the angle between the surface normal at yLi and the ray is

θ Li = sin 1 ( y Li r L ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXnaaBa aaleaacaWGmbGaamyAaaqabaGccqGH9aqpciGGZbGaaiyAaiaac6ga daahaaWcbeqaaiabgkHiTiaaigdaaaGcdaqadaqaamaalaaabaGaam yEamaaBaaaleaacaWGmbGaamyAaaqabaaakeaacaWGYbWaaSbaaSqa aiaadYeaaeqaaaaaaOGaayjkaiaawMcaaaaa@45DD@  

(1.4)

Let the index of refraction of the lens be n. 

Snell's refraction law is:

nsin θ Lr =sin θ Li MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gaciGGZb GaaiyAaiaac6gacqaH4oqCdaWgaaWcbaGaamitaiaadkhaaeqaaOGa eyypa0Jaci4CaiaacMgacaGGUbGaeqiUde3aaSbaaSqaaiaadYeaca WGPbaabeaaaaa@44E9@  

(1.5)

where θ Lr MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXnaaBa aaleaacaWGmbGaamOCaaqabaaaaa@3996@  is the angle between the surface normal and the refracted ray.

Then, using equations (1.4) and (1.5), the angle between the normal and the refracted ray is

θ Lr = sin 1 ( y Li n r L ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXnaaBa aabaGaamitaiaadkhaaeqaaiabg2da9iGacohacaGGPbGaaiOBamaa CaaabeqaaiabgkHiTiaaigdaaaWaaeWaaeaadaWcaaqaaiaadMhada WgaaqaaiaadYeacaWGPbaabeaaaeaacaWGUbGaamOCamaaBaaabaGa amitaaqabaaaaaGaayjkaiaawMcaaaaa@4685@  

(1.6)

The angle of the refracted ray with respect to the x axis is

θ Lrx = θ Lr θ Li MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXnaaBa aabaGaamitaiaadkhacaWG4baabeaacqGH9aqpcqaH4oqCdaWgaaqa aiaadYeacaWGYbaabeaacqGHsislcqaH4oqCdaWgaaqaaiaadYeaca WGPbaabeaaaaa@43AF@  

(1.7)

which is a negative angle when y>0 and positive when y<0 so that the refracted ray slopes toward the x axis.

The slope of he refracted ray is then

m r =tan θ Lrx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaWgaa WcbaGaamOCaaqabaGccqGH9aqpciGG0bGaaiyyaiaac6gacqaH4oqC daWgaaWcbaGaamitaiaadkhacaWG4baabeaaaaa@4088@  

(1.8)

The y coordinate of the refracted ray in the lens can be written as:

y r (x)= y Li + m r (x x Li ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMhadaWgaa WcbaGaamOCaaqabaGccaGGOaGaamiEaiaacMcacqGH9aqpcaWG5bWa aSbaaSqaaiaadYeacaWGPbaabeaakiabgUcaRiaad2gadaWgaaWcba GaamOCaaqabaGccaGGOaGaamiEaiabgkHiTiaadIhadaWgaaWcbaGa amitaiaadMgaaeqaaOGaaiykaaaa@479B@  

(1.9)

In order to compute the intercept of yr with the right hand surface of the lens we can re-write equation (1.9) using equation (1.2) and obtain

y Rr = y Li + m r ( x Rc + r R 2 y Rr 2 x Li ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMhadaWgaa WcbaGaamOuaiaadkhacaaMc8UaaGPaVdqabaGccqGH9aqpcaWG5bWa aSbaaSqaaiaadYeacaWGPbaabeaakiabgUcaRiaad2gadaWgaaWcba GaamOCaaqabaGcdaqadaqaaiaadIhadaWgaaWcbaGaamOuaiaadoga aeqaaOGaey4kaSYaaOaaaeaacaWGYbWaa0baaSqaaiaadkfaaeaaca aIYaaaaOGaeyOeI0IaamyEamaaDaaaleaacaWGsbGaamOCaaqaaiaa ikdaaaaabeaakiabgkHiTiaadIhadaWgaaWcbaGaamitaiaadMgaae qaaaGccaGLOaGaayzkaaaaaa@53B6@  

(1.10)

where yRr is the y intercept of yr(x) with the right surface of the lens and it to be solved for. 

We can greatly simplify solving equation (1.10) by separating out the constants by letting

c= y Li m r ( x Rc + x Li ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadogacqGH9a qpcaWG5bWaaSbaaSqaaiaadYeacaWGPbaabeaakiabgkHiTiaad2ga daWgaaWcbaGaamOCaaqabaGccaGGOaGaamiEamaaBaaaleaacaWGsb Gaam4yaaqabaGccqGHRaWkcaWG4bWaaSbaaSqaaiaadYeacaWGPbaa beaakiaacMcaaaa@45F7@  

(1.11)

and then equation (1.10) becomes:

y Rr c= m r r R 2 y Rr 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMhadaWgaa WcbaGaamOuaiaadkhaaeqaaOGaeyOeI0Iaam4yaiabg2da9iaad2ga daWgaaWcbaGaamOCaaqabaGcdaGcaaqaaiaadkhadaqhaaWcbaGaam OuaaqaaiaaikdaaaGccqGHsislcaWG5bWaa0baaSqaaiaadkfacaWG YbaabaGaaGOmaaaaaeqaaaaa@455A@  

(1.12)

We may conveniently square both side of equation (1.12) and solve for yRr and obtain:

y Rr = c± m r R R 2 (1+ m r 2 ) c 2 1+ m r 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMhadaWgaa WcbaGaamOuaiaadkhaaeqaaOGaeyypa0ZaaSaaaeaacaWGJbGaeyyS aeRaamyBamaaBaaaleaacaWGYbaabeaakmaakaaabaGaamOuamaaDa aaleaacaWGsbaabaGaaGOmaaaakiaacIcacaaIXaGaey4kaSIaamyB amaaDaaaleaacaWGYbaabaGaaGOmaaaakiaacMcacqGHsislcaWGJb WaaWbaaSqabeaacaaIYaaaaaqabaaakeaacaaIXaGaey4kaSIaamyB amaaDaaaleaacaWGYbaabaGaaGOmaaaaaaaaaa@4EB2@  

(1.13)

Having obtained the y intercept using the + sign before the radical, we can use equation (1.2) to obtain the x intercept:

x Rr = x Rc + r R 2 y Rr 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaamOuaiaadkhaaeqaaOGaeyypa0JaamiEamaaBaaaleaacaWG sbGaam4yaaqabaGccqGHRaWkdaGcaaqaaiaadkhadaqhaaWcbaGaam OuaaqaaiaaikdaaaGccqGHsislcaWG5bWaa0baaSqaaiaadkfacaWG YbaabaGaaGOmaaaaaeqaaaaa@4539@  

(1.14)

Finally we may use Snell's law for the refraction of the ray as it exits the right hand surface. The refracted ray's incidence angle with respect to that normal is:

θ Rr = sin 1 ( y Rr r R )+ θ Lrx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXnaaBa aaleaacaWGsbGaamOCaaqabaGccqGH9aqpciGGZbGaaiyAaiaac6ga daahaaWcbeqaaiabgkHiTiaaigdaaaGcdaqadaqaamaalaaabaGaam yEamaaBaaaleaacaWGsbGaamOCaaqabaaakeaacaWGYbWaaSbaaSqa aiaadkfaaeqaaaaaaOGaayjkaiaawMcaaiabgUcaRiabeI7aXnaaBa aaleaacaWGmbGaamOCaiaadIhaaeqaaaaa@4B8A@  

(1.15)

Since

nsin θ Rr =sin θ exit MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gaciGGZb GaaiyAaiaac6gacqaH4oqCdaWgaaWcbaGaamOuaiaadkhaaeqaaOGa eyypa0Jaci4CaiaacMgacaGGUbGaeqiUde3aaSbaaSqaaiaadwgaca WG4bGaamyAaiaadshaaeqaaaaa@46FE@   

(1.16)

we have the refracted angle:

θ exit = sin 1 ( nsin θ Rr ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXnaaBa aaleaacaWGLbGaamiEaiaadMgacaWG0baabeaakiabg2da9iGacoha caGGPbGaaiOBamaaCaaaleqabaGaeyOeI0IaaGymaaaakmaabmaaba GaamOBaiGacohacaGGPbGaaiOBaiabeI7aXnaaBaaaleaacaWGsbGa amOCaaqabaaakiaawIcacaGLPaaaaaa@4A70@  

(1.17)

With respect to the x axis this angle is:

θ exitX = θ exit sin 1 ( y Rr r R ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXnaaBa aaleaacaWGLbGaamiEaiaadMgacaWG0bGaamiwaaqabaGccqGH9aqp cqaH4oqCdaWgaaWcbaGaamyzaiaadIhacaWGPbGaamiDaaqabaGccq GHsislciGGZbGaaiyAaiaac6gadaahaaWcbeqaaiabgkHiTiaaigda aaGcdaqadaqaamaalaaabaGaamyEamaaBaaaleaacaWGsbGaamOCaa qabaaakeaacaWGYbWaaSbaaSqaaiaadkfaaeqaaaaaaOGaayjkaiaa wMcaaaaa@4F85@  

(1.18)

Finally the slope of the this ray is:

m exit =tan θ exitX MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaWgaa WcbaGaamyzaiaadIhacaWGPbGaamiDaaqabaGccqGH9aqpciGG0bGa aiyyaiaac6gacqaH4oqCdaWgaaWcbaGaamyzaiaadIhacaWGPbGaam iDaiaadIfaaeqaaaaa@4545@  

(1.19)

The y coordinate of the exiting ray can be expressed by:

y exit = y Rr + m exit (x x Rr ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMhadaWgaa WcbaGaamyzaiaadIhacaWGPbGaamiDaaqabaGccqGH9aqpcaWG5bWa aSbaaSqaaiaadkfacaWGYbaabeaakiabgUcaRiaad2gadaWgaaWcba GaamyzaiaadIhacaWGPbGaamiDaaqabaGccaGGOaGaamiEaiabgkHi TiaadIhadaWgaaWcbaGaamOuaiaadkhaaeqaaOGaaiykaaaa@4B11@  

(1.20)

Solving equation (1.20) for x at yexit=0, the ray will intercept the x axis at location:

x intercept = x Rr y Rr m exit MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaciyAaiaac6gacaGG0bGaamyzaiaadkhacaWGJbGaamyzaiaa dchacaWG0baabeaakiabg2da9iaadIhadaWgaaWcbaGaamOuaiaadk haaeqaaOGaeyOeI0YaaSaaaeaacaWG5bWaaSbaaSqaaiaadkfacaWG YbaabeaaaOqaaiaad2gadaWgaaWcbaGaamyzaiaadIhacaWGPbGaam iDaaqabaaaaaaa@4C8A@  

(1.21)

MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOaa@35EA@