Bernoulli Principle

Introduction

            This will document an animation of the Bernoulli effect for a gas of atoms at a finite temperature.  The gas will have both the random motion due to its temperature and a variable drift speed along the x axis as it passes through a constriction called a venturi. Venturis have been used in carburetors of internal combustions engines for at least 90 years.  Their function was to provide a region of reduced pressure that could pull fuel up out of the carburetor bowl and vaporize it making it ready for combustion inside the engine.  In this animation it is assumed that the density of the atoms remains almost constant so that the atoms must speed up as the walls of the venturi get closer together. It is also assumed that the temperature of the gas doesn't significantly change.  Since it can only be the change of pressure that causes the increase of speed, the law of conservation of energy require that the pressure be lower at the midpoint of the venturi than at the entrance.

 

Figures

Figure 1: Showing the venturi walls (black), molecules (blue), density histogram (red), and speed histogram (green), streamlines (black,)and lines of constant pressure (isobars, spectrally colored violet at the lowest pressure and deep red at the highest pressure)). Note that the product of the venturi channel width times the speed is approximately constant as it must be to keep the density constant.

Calculations

            In a two dimensional channel (venturi) with a flow of incompressible particles or molecules through it, the longitudinal drift speed of the atoms is inversely proportional to the spacing, w, between the two walls of the channel.

v d (x)= v d0 w 0 w(x) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAhadaWgaa WcbaGaamizaaqabaGccaGGOaGaamiEaiaacMcacqGH9aqpcaWG2bWa aSbaaSqaaiaadsgacaaIWaaabeaakmaalaaabaGaam4DamaaBaaale aacaaIWaaabeaaaOqaaiaadEhacaGGOaGaamiEaiaacMcaaaaaaa@4383@                                                           (1)

where w0 is the spacing at the entrance and exit of the venturi and w(x) is the spacing at position x. 

I have chosen to define the walls of the channel by two hyperbolas:

y Top,Bottom (x)=± r C 1+ ( r E x r C L ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMhadaWgaa WcbaGaamivaiaad+gacaWGWbGaaiilaiaadkeacaWGVbGaamiDaiaa dshacaWGVbGaamyBaaqabaGccaGGOaGaamiEaiaacMcacqGH9aqpcq GHXcqScaWGYbWaaSbaaSqaaiaadoeaaeqaaOWaaOaaaeaacaaIXaGa ey4kaSYaaeWaaeaadaWcaaqaaiaadkhadaWgaaWcbaGaamyraaqaba GccaWG4baabaGaamOCamaaBaaaleaacaWGdbaabeaakiaadYeaaaaa caGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaqabaaaaa@514C@                                                                         (2)

where rC is the half width of the channel at its center, rE is the half width of the channel at its entrance and exit, (x,y)=(0,0) is the symmetry point of the channel, and L is the half length of the channel.

 

If the flow is to be incompressible then the velocity (vx,vy) has to be derivable from a potential.  For our case, that potential will be:

Ψ(x,y)= v x0 y 1+ ( r E r C ) 2 1+ ( r E x r C L ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfI6azjaacI cacaWG4bGaaiilaiaadMhacaGGPaGaeyypa0JaamODamaaBaaaleaa caWG4bGaaGimaaqabaGccaWG5bWaaOaaaeaadaWcaaqaaiaaigdacq GHRaWkdaqadaqaamaalaaabaGaamOCamaaBaaaleaacaWGfbaabeaa aOqaaiaadkhadaWgaaWcbaGaam4qaaqabaaaaaGccaGLOaGaayzkaa WaaWbaaSqabeaacaaIYaaaaaGcbaGaaGymaiabgUcaRmaabmaabaWa aSaaaeaacaWGYbWaaSbaaSqaaiaadweaaeqaaOGaamiEaaqaaiaadk hadaWgaaWcbaGaam4qaaqabaGccaWGmbaaaaGaayjkaiaawMcaamaa CaaaleqabaGaaGOmaaaaaaaabeaaaaa@5278@                              (3)

where (vx0,0) is the velocity far away from the channel.  It will turn out that the velocities are

v x = Ψ y = v x0 1+ ( r E r C ) 2 1+ ( r E x r C L ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAhadaWgaa WcbaGaamiEaaqabaGccqGH9aqpdaWcaaqaaiabgkGi2kabfI6azbqa aiabgkGi2kaadMhaaaGaeyypa0JaamODamaaBaaaleaacaWG4bGaaG imaaqabaGcdaGcaaqaamaalaaabaGaaGymaiabgUcaRmaabmaabaWa aSaaaeaacaWGYbWaaSbaaSqaaiaadweaaeqaaaGcbaGaamOCamaaBa aaleaacaWGdbaabeaaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaa ikdaaaaakeaacaaIXaGaey4kaSYaaeWaaeaadaWcaaqaaiaadkhada WgaaWcbaGaamyraaqabaGccaWG4baabaGaamOCamaaBaaaleaacaWG dbaabeaakiaadYeaaaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYa aaaaaaaeqaaaaa@5484@                                        (4)

v y = Ψ x = v x0 xy r E 2 r C 2 L 2 1+ ( r E r C ) 2 ( 1+ ( r E x r C L ) 2 ) 3 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAhadaWgaa WcbaGaamyEaaqabaGccqGH9aqpcqGHsisldaWcaaqaaiabgkGi2kab fI6azbqaaiabgkGi2kaadIhaaaGaeyypa0JaamODamaaBaaaleaaca WG4bGaaGimaaqabaGccaWG4bGaamyEamaalaaabaGaamOCamaaDaaa leaacaWGfbaabaGaaGOmaaaaaOqaaiaadkhadaqhaaWcbaGaam4qaa qaaiaaikdaaaGccaWGmbWaaWbaaSqabeaacaaIYaaaaaaakmaalaaa baWaaOaaaeaacaaIXaGaey4kaSYaaeWaaeaadaWcaaqaaiaadkhada WgaaWcbaGaamyraaqabaaakeaacaWGYbWaaSbaaSqaaiaadoeaaeqa aaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaeqaaaGcba WaaeWaaeaacaaIXaGaey4kaSYaaeWaaeaadaWcaaqaaiaadkhadaWg aaWcbaGaamyraaqabaGccaWG4baabaGaamOCamaaBaaaleaacaWGdb aabeaakiaadYeaaaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaa aaGccaGLOaGaayzkaaWaaWbaaSqabeaadaWcaaqaaiaaiodaaeaaca aIYaaaaaaaaaaaaa@61EF@                                    (5)

Note that if y follows the contours of equation 2, the potential values on the channel walls will be:

Ψ Walls =± v x0 r C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfI6aznaaBa aaleaacaWGxbGaamyyaiaadYgacaWGSbGaam4CaaqabaGccqGH9aqp cqGHXcqScaWG2bWaaSbaaSqaaiaadIhacaaIWaaabeaakiaadkhada WgaaWcbaGaam4qaaqabaaaaa@4413@                                      (6)

which is a constant so that the walls are constant potential surfaces.

The partial differential equation governing the flow of particles is the equation of continuity:

(nv(x,y))= n t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgEGirlabgk ci3kaacIcacaWGUbGaaCODaiaacIcacaWG4bGaaiilaiaadMhacaGG PaGaaiykaiabg2da9maalaaabaGaeyOaIyRaamOBaaqaaiabgkGi2k aadshaaaaaaa@4613@                                           (7)

where n is the particle density (particles m-2) and t is time.  Since we have declared that these particles are incompressible, we must have

n t =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIyRaamOBaaqaaiabgkGi2kaadshaaaGaeyypa0JaaGimaaaa@3C73@

and therefore:

nv(x,y)=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gacqGHhi s0cqGHIaYTcaWH2bGaaiikaiaadIhacaGGSaGaamyEaiaacMcacqGH 9aqpcaaIWaaaaa@40AC@                                                (8)

Using equations 4 and 5 in equation 8 we get:

v y y = v x0 x r E 2 r C 2 L 2 1+ ( r E r C ) 2 ( 1+ ( r E x r C L ) 2 ) 3 2 v x x = v x0 x r E 2 r C 2 L 2 1+ ( r E r C ) 2 ( 1+ ( r E x r C L ) 2 ) 3 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaWaaSaaae aacqGHciITcaWG2bWaaSbaaSqaaiaadMhaaeqaaaGcbaGaeyOaIyRa amyEaaaacqGH9aqpcaWG2bWaaSbaaSqaaiaadIhacaaIWaaabeaaki aadIhadaWcaaqaaiaadkhadaqhaaWcbaGaamyraaqaaiaaikdaaaaa keaacaWGYbWaa0baaSqaaiaadoeaaeaacaaIYaaaaOGaamitamaaCa aaleqabaGaaGOmaaaaaaGcdaWcaaqaamaakaaabaGaaGymaiabgUca RmaabmaabaWaaSaaaeaacaWGYbWaaSbaaSqaaiaadweaaeqaaaGcba GaamOCamaaBaaaleaacaWGdbaabeaaaaaakiaawIcacaGLPaaadaah aaWcbeqaaiaaikdaaaaabeaaaOqaamaabmaabaGaaGymaiabgUcaRm aabmaabaWaaSaaaeaacaWGYbWaaSbaaSqaaiaadweaaeqaaOGaamiE aaqaaiaadkhadaWgaaWcbaGaam4qaaqabaGccaWGmbaaaaGaayjkai aawMcaamaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaamaaCaaa leqabaWaaSaaaeaacaaIZaaabaGaaGOmaaaaaaaaaaGcbaWaaSaaae aacqGHciITcaWG2bWaaSbaaSqaaiaadIhaaeqaaaGcbaGaeyOaIyRa amiEaaaacqGH9aqpcqGHsislcaWG2bWaaSbaaSqaaiaadIhacaaIWa aabeaakiaadIhadaWcaaqaaiaadkhadaqhaaWcbaGaamyraaqaaiaa ikdaaaaakeaacaWGYbWaa0baaSqaaiaadoeaaeaacaaIYaaaaOGaam itamaaCaaaleqabaGaaGOmaaaaaaGcdaWcaaqaamaakaaabaGaaGym aiabgUcaRmaabmaabaWaaSaaaeaacaWGYbWaaSbaaSqaaiaadweaae qaaaGcbaGaamOCamaaBaaaleaacaWGdbaabeaaaaaakiaawIcacaGL PaaadaahaaWcbeqaaiaaikdaaaaabeaaaOqaamaabmaabaGaaGymai abgUcaRmaabmaabaWaaSaaaeaacaWGYbWaaSbaaSqaaiaadweaaeqa aOGaamiEaaqaaiaadkhadaWgaaWcbaGaam4qaaqabaGccaWGmbaaaa GaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMca amaaCaaaleqabaWaaSaaaeaacaaIZaaabaGaaGOmaaaaaaaaaaaaaa@85F1@                                  (9)

so that equation 8 is satisfied.

More generally, we note that since

v x = Ψ y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAhadaWgaa WcbaGaamiEaaqabaGccqGH9aqpdaWcaaqaaiabgkGi2kabfI6azbqa aiabgkGi2kaadMhaaaaaaa@3E88@                                                (10)

v y = Ψ x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAhadaWgaa WcbaGaamyEaaqabaGccqGH9aqpcqGHsisldaWcaaqaaiabgkGi2kab fI6azbqaaiabgkGi2kaadIhaaaaaaa@3F75@

v x x + v x x = 2 Ψ xy 2 Ψ xy =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OaIyRaamODamaaBaaaleaacaWG4baabeaaaOqaaiabgkGi2kaadIha aaGaey4kaSYaaSaaaeaacqGHciITcaWG2bWaaSbaaSqaaiaadIhaae qaaaGcbaGaeyOaIyRaamiEaaaacqGH9aqpdaWcaaqaaiabgkGi2oaa CaaaleqabaGaaGOmaaaakiabfI6azbqaaiabgkGi2kaadIhacqGHci ITcaWG5baaaiabgkHiTmaalaaabaGaeyOaIy7aaWbaaSqabeaacaaI YaaaaOGaeuiQdKfabaGaeyOaIyRaamiEaiabgkGi2kaadMhaaaGaey ypa0JaaGimaaaa@580C@

for any continuous function of x and y.

Boundary Collisions

            For wall collisions we will make the assumption that, with respect to the normal of the boundary, the exiting velocity angle is the same as the incoming velocity.  It will be seen that this does not change the energy of the particle. The inward (pointing toward the inside of the channel) unit normal vector to the boundary at point x is defined in terms of the slope, y'(x)=dy/dx, of the boundary at point x.

n B,T = 1 1+y ' 2 ( y' x ^ ± y ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaah6gadaWgaa WcbaGaamOqaiaacYcacaWGubaabeaakiabg2da9maalaaabaGaaGym aaqaamaakaaabaGaaGymaiabgUcaRiaadMhacaGGNaWaaWbaaSqabe aacaaIYaaaaaqabaaaaOWaaeWaaeaacqWItisBcaWG5bGaai4jaiqa hIhagaqcaiabgglaXkqahMhagaqcaaGaayjkaiaawMcaaaaa@47F8@                                           (11)

where the B,T subscripts on vector n refer to bottom and top boundaries, respectively, and x and y with carats over them are unit vectors along the x and y directions.

The unit vectors tangential to the top and bottom boundaries can be described by

t B,T = 1 1+y ' 2 ( x ^ +y' y ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahshadaWgaa WcbaGaamOqaiaacYcacaWGubaabeaakiabg2da9maalaaabaGaaGym aaqaamaakaaabaGaaGymaiabgUcaRiaadMhacaGGNaWaaWbaaSqabe aacaaIYaaaaaqabaaaaOWaaeWaaeaaceWH4bGbaKaacqGHRaWkcaWG 5bGaai4jaiqahMhagaqcaaGaayjkaiaawMcaaaaa@45BF@                                               (12)

where we note that t is orthogonal to n since their dot product is:

t B,T n B,T = 1 1+y ' 2 ( x ^ +y' y ^ )( y' x ^ ± y ^ )= y'y' 1+y ' 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahshadaWgaa WcbaGaamOqaiaacYcacaWGubaabeaakiabgkci3kaad6gadaWgaaWc baGaamOqaiaacYcacaWGubaabeaakiabg2da9maalaaabaGaaGymaa qaaiaaigdacqGHRaWkcaWG5bGaai4jamaaCaaaleqabaGaaGOmaaaa aaGcdaqadaqaaiqahIhagaqcaiabgUcaRiaadMhacaGGNaGabCyEay aajaaacaGLOaGaayzkaaGaeyOiGC7aaeWaaeaacqWItisBcaWG5bGa ai4jaiqahIhagaqcaiabgglaXkqahMhagaqcaaGaayjkaiaawMcaai abg2da9maalaaabaGaamyEaiaacEcacqGHsislcaWG5bGaai4jaaqa aiaaigdacqGHRaWkcaWG5bGaai4jamaaCaaaleqabaGaaGOmaaaaaa GccqGH9aqpcaaIWaaaaa@5FF6@   (13)

The velocity vector incident on the boundaries can be described by its components along the normal and tangential vectors as:

v B,T = 1 1+y ' 2 ( v x x ^ + v y y ^ )( y' x ^ ± y ^ ))n+(( v x x ^ + v y y ^ )( x ^ +y' y ^ ))t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahAhadaWgaa WcbaGaamOqaiaacYcacaWGubaabeaakiabg2da9maalaaabaGaaGym aaqaaiaaigdacqGHRaWkcaWG5bGaai4jamaaCaaaleqabaGaaGOmaa aaaaGccaWHOaGaamODamaaBaaaleaacaWG4baabeaakiqahIhagaqc aiabgUcaRiaadAhadaWgaaWcbaGaamyEaaqabaGcceWH5bGbaKaaca GGPaGaeyOiGC7aaeWaaeaacqWItisBcaWG5bGaai4jaiqahIhagaqc aiabgglaXkqahMhagaqcaaGaayjkaiaawMcaaiaahMcacaWHUbGaey 4kaSIaaCikaiaahIcacaWG2bWaaSbaaSqaaiaadIhaaeqaaOGabCiE ayaajaGaey4kaSIaamODamaaBaaaleaacaWG5baabeaakiqahMhaga qcaiaacMcacqGHIaYTdaqadaqaaiqahIhagaqcaiabgUcaRiaadMha caGGNaGabCyEayaajaaacaGLOaGaayzkaaGaaCykaiaahshaaaa@679C@                (14)

 

which can more conveniently written as the matrix expression:

( v n v t ) B,T = 1 1+y ' 2 ( y' ±1 1 y' )( v x v y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaqbae qabiqaaaqaaiaadAhadaWgaaWcbaGaamOBaaqabaaakeaacaWG2bWa aSbaaSqaaiaadshaaeqaaaaaaOGaayjkaiaawMcaamaaBaaaleaaca WGcbGaaiilaiaadsfaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGa aGymaiabgUcaRiaadMhacaGGNaWaaWbaaSqabeaacaaIYaaaaaaakm aabmaabaqbaeqabiGaaaqaaiabloHiTjaadMhacaGGNaaabaGaeyyS aeRaaGymaaqaaiaaigdaaeaacaWG5bGaai4jaaaaaiaawIcacaGLPa aadaqadaqaauaabeqaceaaaeaacaWG2bWaaSbaaSqaaiaadIhaaeqa aaGcbaGaamODamaaBaaaleaacaWG5baabeaaaaaakiaawIcacaGLPa aaaaa@53D4@                                                         (15)

Our collision results in negation of the normal component of the incoming velocity while the tangential component stays the same.  Thus:

( v n v t ) B,T Exiting = 1 1+y ' 2 ( ±y' 1 1 y' )( v x v y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaqbae qabiqaaaqaaiaadAhadaWgaaWcbaGaamOBaaqabaaakeaacaWG2bWa aSbaaSqaaiaadshaaeqaaaaaaOGaayjkaiaawMcaamaaDaaaleaaca WGcbGaaiilaiaadsfaaeaacaWGfbGaamiEaiaadMgacaWG0bGaamyA aiaad6gacaWGNbaaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGymai abgUcaRiaadMhacaGGNaWaaWbaaSqabeaacaaIYaaaaaaakmaabmaa baqbaeqabiGaaaqaaiabgglaXkaadMhacaGGNaaabaGaeS4eI0MaaG ymaaqaaiaaigdaaeaacaWG5bGaai4jaaaaaiaawIcacaGLPaaadaqa daqaauaabeqaceaaaeaacaWG2bWaaSbaaSqaaiaadIhaaeqaaaGcba GaamODamaaBaaaleaacaWG5baabeaaaaaakiaawIcacaGLPaaaaaa@5A50@                                                      (16)

This result must be converted to the x and y components of v.  To do that we just both sides of equation 15 by the inverse of the matrix in equation 15

( y' ±1 1 y' ) 1 ( v n v t ) B,T = 1 1+y ' 2 ( y' ±1 1 y' ) 1 ( y' ±1 1 y' )( v x v y )= 1 1+y ' 2 ( v x v y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaqbae qabiGaaaqaaiabloHiTjaadMhacaGGNaaabaGaeyySaeRaaGymaaqa aiaaigdaaeaacaWG5bGaai4jaaaaaiaawIcacaGLPaaadaahaaWcbe qaaiabgkHiTiaaigdaaaGcdaqadaqaauaabeqaceaaaeaacaWG2bWa aSbaaSqaaiaad6gaaeqaaaGcbaGaamODamaaBaaaleaacaWG0baabe aaaaaakiaawIcacaGLPaaadaWgaaWcbaGaamOqaiaacYcacaWGubaa beaakiabg2da9maalaaabaGaaGymaaqaaiaaigdacqGHRaWkcaWG5b Gaai4jamaaCaaaleqabaGaaGOmaaaaaaGcdaqadaqaauaabeqaciaa aeaacqWItisBcaWG5bGaai4jaaqaaiabgglaXkaaigdaaeaacaaIXa aabaGaamyEaiaacEcaaaaacaGLOaGaayzkaaWaaWbaaSqabeaacqGH sislcaaIXaaaaOGaaGPaVpaabmaabaqbaeqabiGaaaqaaiabloHiTj aadMhacaGGNaaabaGaeyySaeRaaGymaaqaaiaaigdaaeaacaWG5bGa ai4jaaaaaiaawIcacaGLPaaadaqadaqaauaabeqaceaaaeaacaWG2b WaaSbaaSqaaiaadIhaaeqaaaGcbaGaamODamaaBaaaleaacaWG5baa beaaaaaakiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiaaigdaaeaaca aIXaGaey4kaSIaamyEaiaacEcadaahaaWcbeqaaiaaikdaaaaaaOWa aeWaaeaafaqabeGabaaabaGaamODamaaBaaaleaacaWG4baabeaaaO qaaiaadAhadaWgaaWcbaGaamyEaaqabaaaaaGccaGLOaGaayzkaaaa aa@781E@

so that:

( v x v y )=(1+y ' 2 ) ( y' ±1 1 y' ) 1 ( v n v t ) B,T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaqbae qabiqaaaqaaiaadAhadaWgaaWcbaGaamiEaaqabaaakeaacaWG2bWa aSbaaSqaaiaadMhaaeqaaaaaaOGaayjkaiaawMcaaiabg2da9iaacI cacaaIXaGaey4kaSIaamyEaiaacEcadaahaaWcbeqaaiaaikdaaaGc caGGPaWaaeWaaeaafaqabeGacaaabaGaeS4eI0MaamyEaiaacEcaae aacqGHXcqScaaIXaaabaGaaGymaaqaaiaadMhacaGGNaaaaaGaayjk aiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaakmaabmaabaqbae qabiqaaaqaaiaadAhadaWgaaWcbaGaamOBaaqabaaakeaacaWG2bWa aSbaaSqaaiaadshaaeqaaaaaaOGaayjkaiaawMcaamaaBaaaleaaca WGcbGaaiilaiaadsfaaeqaaaaa@5637@                                                     (17)

Inserting the expression 16 for the exiting velocity into equation 17 we obtain:

( v x v y ) B,T Exiting = ( y' ±1 1 y' ) 1 ( ±y' 1 1 y' )( v x v y )= 1 1+y ' 2 ( y' 1 ±1 y' )( ±y' 1 1 y' )( v x v y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaqbae qabiqaaaqaaiaadAhadaWgaaWcbaGaamiEaaqabaaakeaacaWG2bWa aSbaaSqaaiaadMhaaeqaaaaaaOGaayjkaiaawMcaamaaDaaaleaaca WGcbGaaiilaiaadsfaaeaacaWGfbGaamiEaiaadMgacaWG0bGaamyA aiaad6gacaWGNbaaaOGaeyypa0ZaaeWaaeaafaqabeGacaaabaGaeS 4eI0MaamyEaiaacEcaaeaacqGHXcqScaaIXaaabaGaaGymaaqaaiaa dMhacaGGNaaaaaGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaG ymaaaakmaabmaabaqbaeqabiGaaaqaaiabgglaXkaadMhacaGGNaaa baGaeS4eI0MaaGymaaqaaiaaigdaaeaacaWG5bGaai4jaaaaaiaawI cacaGLPaaadaqadaqaauaabeqaceaaaeaacaWG2bWaaSbaaSqaaiaa dIhaaeqaaaGcbaGaamODamaaBaaaleaacaWG5baabeaaaaaakiaawI cacaGLPaaacqGH9aqpdaWcaaqaaiaaigdaaeaacaaIXaGaey4kaSIa amyEaiaacEcadaahaaWcbeqaaiaaikdaaaaaaOWaaeWaaeaafaqabe GacaaabaGaeS4eI0MaamyEaiaacEcaaeaacaaIXaaabaGaeyySaeRa aGymaaqaaiaadMhacaGGNaaaaaGaayjkaiaawMcaamaabmaabaqbae qabiGaaaqaaiabgglaXkaadMhacaGGNaaabaGaeS4eI0MaaGymaaqa aiaaigdaaeaacaWG5bGaai4jaaaaaiaawIcacaGLPaaadaqadaqaau aabeqaceaaaeaacaWG2bWaaSbaaSqaaiaadIhaaeqaaaGcbaGaamOD amaaBaaaleaacaWG5baabeaaaaaakiaawIcacaGLPaaaaaa@7FBD@

( v x v y ) B,T Exiting = 1 1+y ' 2 ( 1y ' 2 2y' 2y' y ' 2 1 )( v x v y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaqbae qabiqaaaqaaiaadAhadaWgaaWcbaGaamiEaaqabaaakeaacaWG2bWa aSbaaSqaaiaadMhaaeqaaaaaaOGaayjkaiaawMcaamaaDaaaleaaca WGcbGaaiilaiaadsfaaeaacaWGfbGaamiEaiaadMgacaWG0bGaamyA aiaad6gacaWGNbaaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGymai abgUcaRiaadMhacaGGNaWaaWbaaSqabeaacaaIYaaaaaaakmaabmaa baqbaeqabiGaaaqaaiaaigdacqGHsislcaWG5bGaai4jamaaCaaale qabaGaaGOmaaaaaOqaaiaaikdacaWG5bGaai4jaaqaaiaaikdacaWG 5bGaai4jaaqaaiaadMhacaGGNaWaaWbaaSqabeaacaaIYaaaaOGaey OeI0IaaGymaaaaaiaawIcacaGLPaaadaqadaqaauaabeqaceaaaeaa caWG2bWaaSbaaSqaaiaadIhaaeqaaaGcbaGaamODamaaBaaaleaaca WG5baabeaaaaaakiaawIcacaGLPaaaaaa@5FC8@                                              (18)

 

Particle-Particle Collisions

            Here we will consider spherical particles all of which have the same mass, m, and diameter, D.  The centers of the spheres will be labeled (x1,y1) and (x2,y2).  Upon collision, the momentum transferred between the spheres will always be along the unit vector:

u= [ ( x 1 x 2 ) x ^ +( y 1 y 2 ) y ^ ] r 12 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahwhacqGH9a qpdaWcaaqaamaadmaabaGaaiikaiaadIhadaWgaaWcbaGaaGymaaqa baGccqGHsislcaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaiykaiqahI hagaqcaiabgUcaRiaacIcacaWG5bWaaSbaaSqaaiaaigdaaeqaaOGa eyOeI0IaamyEamaaBaaaleaacaaIYaaabeaakiaacMcaceWH5bGbaK aaaiaawUfacaGLDbaaaeaacaWGYbWaaSbaaSqaaiaaigdacaaIYaaa beaaaaaaaa@4BD8@                                                     (19)

where

r 12 = ( x 1 x 2 ) 2 + ( y 1 y 2 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhadaWgaa WcbaGaaGymaiaaikdaaeqaaOGaeyypa0ZaaOaaaeaacaGGOaGaamiE amaaBaaaleaacaaIXaaabeaakiabgkHiTiaadIhadaWgaaWcbaGaaG OmaaqabaGccaGGPaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaiik aiaadMhadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWG5bWaaSbaaS qaaiaaikdaaeqaaOGaaiykamaaCaaaleqabaGaaGOmaaaaaeqaaaaa @48AB@

is the distance between centers.

Since the masses are the same, the expression for the final velocities in terms of the initial velocities is:

v 1 ' + v 2 ' = v 1 + v 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahAhadaqhaa WcbaGaaGymaaqaaiaacEcaaaGccqGHRaWkcaWH2bWaa0baaSqaaiaa ikdaaeaacaGGNaaaaOGaeyypa0JaaCODamaaDaaaleaacaaIXaaaba aaaOGaey4kaSIaaCODamaaDaaaleaacaaIYaaabaaaaaaa@41C7@                                                                                   (20)

where the apostrophe on the left side of the equations indicates the final velocities.  We know that the energies are conserved so

v 1 '2 + v 2 '2 = v 1 2 + v 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAhadaqhaa WcbaGaaGymaaqaaiaacEcacaaIYaaaaOGaey4kaSIaamODamaaDaaa leaacaaIYaaabaGaai4jaiaaikdaaaGccqGH9aqpcaWG2bWaa0baaS qaaiaaigdaaeaacaaIYaaaaOGaey4kaSIaamODamaaDaaaleaacaaI YaaabaGaaGOmaaaaaaa@44A7@                                                                                  (21)

The directions of the change in velocities are along the vector of centers, u, and the values of the changes of velocities must be equal and opposite.

Δ v 1 =δvu=Δ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaahs5acaWH2b WaaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaeqiTdqMaamODaiaahwha cqGH9aqpcqGHsislcaWHuoGaaCODamaaBaaaleaacaaIYaaabeaaaa a@4299@                                                                     (22)

so that

v 1 ' = v 1 +δvu v 2 ' = v 2 δvu MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaaCODam aaDaaaleaacaaIXaaabaGaai4jaaaakiabg2da9iaahAhadaqhaaWc baGaaGymaaqaaaaakiabgUcaRiabes7aKjaadAhacaWH1baabaGaaC ODamaaDaaaleaacaaIYaaabaGaai4jaaaakiabg2da9iaahAhadaqh aaWcbaGaaGOmaaqaaaaakiabgkHiTiabes7aKjaadAhacaWH1baaaa a@4A25@                                                                                     (23)

Now we can use equation 23 in equation 21 to solve for the value of δv.

  ( v 1 +δvu)( v 1 +δvu)+( v 2 δvu)( v 2 δvu)= v 1 2 + v 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcacaWH2b Waa0baaSqaaiaaigdaaeaaaaGccqGHRaWkcqaH0oazcaWG2bGaaCyD aiaacMcacqGHIaYTcaGGOaGaaCODamaaDaaaleaacaaIXaaabaaaaO Gaey4kaSIaeqiTdqMaamODaiaahwhacaGGPaGaey4kaSIaaiikaiaa hAhadaqhaaWcbaGaaGOmaaqaaaaakiabgkHiTiabes7aKjaadAhaca WH1bGaaiykaiabgkci3kaacIcacaWH2bWaa0baaSqaaiaaikdaaeaa aaGccqGHsislcqaH0oazcaWG2bGaaCyDaiaacMcacqGH9aqpcaWG2b Waa0baaSqaaiaaigdaaeaacaaIYaaaaOGaey4kaSIaamODamaaDaaa leaacaaIYaaabaGaaGOmaaaaaaa@6048@                              (24)

where the large dot stands for the dot product and equation 24 simplifies to:

(2δvu v 1 +δ v 2 )+(2δvu v 2 +δ v 2 )=0 2δ v 2 +2δv(u v 1 u v 2 )=0 δv=u( v 2 v 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaaiikai aaikdacqaH0oazcaWG2bGaaCyDaiabgkci3kaahAhadaqhaaWcbaGa aGymaaqaaaaakiabgUcaRiabes7aKjaadAhadaahaaWcbeqaaiaaik daaaGccaGGPaGaey4kaSIaaiikaiabgkHiTiaaikdacqaH0oazcaWG 2bGaaCyDaiabgkci3kaahAhadaqhaaWcbaGaaGOmaaqaaaaakiabgU caRiabes7aKjaadAhadaahaaWcbeqaaiaaikdaaaGccaGGPaGaeyyp a0JaaGimaaqaaiaaikdacqaH0oazcaWG2bWaaWbaaSqabeaacaaIYa aaaOGaey4kaSIaaGOmaiabes7aKjaadAhacaGGOaGaaCyDaiabgkci 3kaahAhadaqhaaWcbaGaaGymaaqaaaaakiabgkHiTiaahwhacqGHIa YTcaWH2bWaa0baaSqaaiaaikdaaeaaaaGccaGGPaGaeyypa0JaaGim aaqaaiabes7aKjaadAhacqGH9aqpcaWH1bGaeyOiGCRaaiikaiaahA hadaqhaaWcbaGaaGOmaaqaaaaakiabgkHiTiaahAhadaqhaaWcbaGa aGymaaqaaaaakiaacMcaaaaa@768D@                                                       (25)

Equations 23 and 25 are a complete solution for the final velocities.

Since the animation is digital we will expect that most often the collision condition will be realized when the distance between the centers of the two spheres,r12, is less than D. To handle this we will increase the distance between the centers by the difference

  dr=D r 12 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgacaWGYb Gaeyypa0JaamiraiabgkHiTiaadkhadaWgaaWcbaGaaGymaiaaikda aeqaaaaa@3D21@

by shifting each sphere in opposite directions by dr/2 along u.  Thus we will move the centers by the vectors:

δ r 1,2 =± dr 2 u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKjaadk hadaWgaaWcbaGaaGymaiaacYcacaaIYaaabeaakiabg2da9iabggla XoaalaaabaGaamizaiaadkhaaeaacaaIYaaaaiaahwhaaaa@4182@                                                                                                     (26)

Pressure

According to the references, the pressure reduction is proportional to the speed squared and the particle density, n (m-3):

P(x,y)= P 0 1 2 nm v d 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfacaGGOa GaamiEaiaacYcacaWG5bGaaiykaiabg2da9iaadcfadaWgaaWcbaGa aGimaaqabaGccqGHsisldaWcaaqaaiaaigdaaeaacaaIYaaaaiaad6 gacaWGTbGaamODamaaDaaaleaacaWGKbaabaGaaGOmaaaaaaa@44B5@                                                                           (27)

where m is the mass of the particle or molecule and drift speeds, vd, were already given in equations 4 and 5.  Therefore the pressure toward the horizontal center of the venturi will be reduced.  The lines of equal pressure, isobars, are shown as vertical lines in the animation.  The colors of these lines vary as the optical spectrum from violet at the lowest pressure to deep red at entrance where the pressure is lowest.