`p(E)=b sqrt(E/bar E)exp(-{3E}/{2bar E})`
where `E` is kinetic energy and `bar E` is the average kinetic energy of all particles.`b int_{0}^{oo}p(E)dE=1`
`m_1 bb"v"_{1f}+m_2 bb"v"_{2f}=m_1 bb"v"_{1i}+m_2 bb"v"_{2i} (1)`
where the subscript f stands for final value and the subscript i stands for initial value and the arrowed bold letter `vec bb"v"` stands for the velocity vector. The conservation of kinetic energy equation is as follows:`m_1 bb"v"_{1f} cdot bb"v"_{1f} +m_2 bb"v"_{2f} cdot bb"v"_{2f}=m_1 bb"v"_{1i} cdot bb"v"_{1i} +m_2 bb"v"_{2i} cdot bb"v"_{2i} (2)`
where the `cdot` between the velocity vectors stands for the inner or dot product of the two vectors. When we combine equations 1 and 2 we get equations that relate the components of the velocity vectors. The most important concept in these calculations is that of the unit vector ` hat bb"u"` between the centers of the two particles that are colliding`hat bb "u"=[(x_2-x_1)hat bb"x"+(y_2-y_1)hat bb"y"+(z_2-z_1)hat bb"z"]/r_{12}`
where the x, y, and z that have hats are unit vectors along their respective axes and`r_{12}=sqrt[(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2]`
Note that the unit vector points from sphere 1 to sphere 2 so, if `x_2` is greater than `x_1`, the unit vector's x component is positive.`m_1 delta bb"v"_1=M delta v hat bb"u"=-m_2 delta bb"v"_2 (3)`
where `M` has units of mass and `M` and the scalar speed increment `delta v` are still to be determined. Now we may re-write equation 2 using equation 3 and obtain:`((m_1 bb"v"_1+M delta v hat bb"u") cdot (m_1 bb"v"_1+M delta v hat bb"u"))/(m_1)+ ((m_2 bb"v"_1-M delta vhat bb"u") cdot (m_2 bb"v"_2-M delta vhat bb"u"))/(m_2) =m_1 bb"v"_{1} cdot bb"v"_{1} +m_2 bb"v"_{2} cdot bb"v"_{2}(3)`
After cancellations of the terms on its right side, equation 4 simplifies to:`M delta v=(2m_1m_2)/(m_1+m_2)( bb"v"_1- bb"v"_2) cdot hat bb"u"`
We can now make the identifications:`M=(2m_1m_2)/(m_1+m_2)`
and`delta v=( bb"v"_1- bb"v"_2) cdot hat bb"u"`
where M is known as the "reduced mass" Finally using equation 3 again we can write the expressions for the final velocity vectors:
` bb"v"_{1f}= bb"v"_{1i}+M/m_1 [( bb"v"_1- bb"v"_2) cdot hat bb"u"] hat bb"u"`
` bb"v"_{2f}= bb"v"_{2i}-M/m_2 [( bb"v"_1- bb"v"_2) cdot hat bb"u"] hat bb"u"`